Demystifying Explosives: Concepts in High Energy Materials explains the basic concepts of and the science behind the entire spectrum of high energy materials (HEMs) and gives a broad perspective about all types of HEMs and their interrelationships. Demystifying Explosives covers topics ranging from explosives, deflagration, detonation, and pyrotechnics to safety and security aspects of HEMS, looking at their aspects, particularly their inter-relatedness with respect to properties and performance. The book explains concepts related to the molecular structure of HEMs, their properties, performance parameters, detonation and shock waves including explosives and propellants. The theory-based title also deals with important (safety and security) and interesting (constructive applications) aspects connected with HEMs and is of fundamental use to students in their introduction to these materials and applications.
The first precision measurements on CP violation in the B system are reported. Both the BELLE and the BABAR collaboration presented, among others, results for sin 2ß with much improved accuracy. Results from the Sudbury Neutrino Observatory, SNO, also deserve to be mentioned. The convincing evidence of solar neutrino oscillations had been presented by SNO prior to the conference; a full presentation was given at the conference. An incredibly precise measurement of the anomalous magnetic moment of the muon is reported, a fresh result from the Brookhaven National Laboratory. Apart from these distinct physics highlights, there are also the first results from the new Tevatron run and from the relativistic heavy ion collider RHIC. Theorists write of our ever better understanding of the Standard Model and of what might lie beyond. Risky as it is to highlight only a couple of exciting subjects, it is merely meantto whet the appetite for further reading.
``String Theory in Four Dimensions'' contains a representative collection of papers dealing with various aspects of string phenomenology, including compactifications on smooth manifolds and more general conformal field theories. Together with the lucid introduction by M. Dine, this material gives the reader a good working knowledge of our present ideas for connecting string theory to nature.
Over the past few years, finite-size scaling has become an increasingly important tool in studies of critical systems. This is partly due to an increased understanding of finite-size effects by analytical means, and partly due to our ability to treat larger systems with large computers. The aim of this volume was to collect those papers which have been important for this progress and which illustrate novel applications of the method. The emphasis has been placed on relatively recent developments, including the use of the &egr;-expansion and of conformal methods.
During the past few years the physics and technology of charged particle beams on which electron-positron linear colliders in the TeV region, storage rings from synchrotron radiation sources and Free Electron Lasers are based, has seen a remarkable development. The purpose of this series of schools is to address the physics and technology issues of this field, train young people and at the same time provide a forum for discussions on recent advances for scientists active in this field. The subjects chosen for this first course reflect the recent interest in TeV electron positron colliders, the possibility offered by Free Electron Lasers to power them and the developments in the production of high brightness electron beams.
The articles collected in this volume are mainly concerned with the phenomenological description of the 1964 discovery on K° decay that CP invariance was violated in nature. The variety of models developed to explain this CP violation are described together with reprints of more recent definitive experiments, and CP violation in the B° system and the electric dipole moment of the neutron is also covered.
The book includes a selection of papers on the construction of superstring theories, mainly written during the years 1984-1987. It covers ten-dimensional supersymmetric and non-supersymmetric strings, four-dimensional heterotic strings and four-dimensional type-II strings. An introduction to more recent developments in conformal field theory in relation to string construction is provided.
Fusion: The Energy of the Universe, 2e is an essential reference providing basic principles of fusion energy from its history to the issues and realities progressing from the present day energy crisis. The book provides detailed developments and applications for researchers entering the field of fusion energy research. This second edition includes the latest results from the National Ignition Facility at the Lawrence Radiation Laboratory at Livermore, CA, and the progress on the International Thermonuclear Experimental Reactor (ITER) tokamak programme at Caderache, France.
The present volume covers the story of the history of CERN from the mid 1960s to the late 1970s. The book is organized in three main parts. The first, containing contributions by historians of science, perceives the laboratory as being at the node of a complex of interconnected relationships between scientists and science managers on the staff, the users in the member states, and the governments which were called upon to finance the organization. Parts II and III include chapters by practising scientists. The former surveys the theoretical and experimental physics results obtained at CERN in this period, while the latter describes the development of the laboratory's accelerator complex and Charpak detection techniques.
The method of the QCD sum rules was and still is one of the most productive tools in a wide range of problems associated with the hadronic phenomenology. Many heuristic ideas, computational devices, specific formulae which are useful to theorists working not only in hadronic physics, have been accumulated in this method. Some of the results and approaches which have originally been developed in connection with the QCD sum rules can be and are successfully applied in related fields, such as supersymmetric gauge theories, nontraditional schemes of quarks and leptons etc. The amount of literature on these and other more basic problems in hadronic physics has grown enormously in recent years. This volume presents a collection of papers which provide an overview of all basic elements of the sum rule approach and priority has been given to those works which seemed most useful from a pedagogical point of view.