Advanced Topics in the Theory of Dynamical Systems covers the proceedings of the international conference by the same title, held at Villa Madruzzo, Trento, Italy on June 1-6, 1987. The conference reviews research advances in the field of dynamical systems. This book is composed of 20 chapters that explore the theoretical aspects and problems arising from applications of these systems. Considerable chapters are devoted to finite dimensional systems, with special emphasis on the analysis of existence of periodic solutions to Hamiltonian systems. Other chapters deal with infinite dimensional systems and the developments of methods in the general approach to existence and qualitative analysis problems in the general theory, as well as in the study of particular systems concerning natural sciences. The final chapters discuss the properties of hyperbolic sets, equivalent period doubling, Cauchy problems, and quasiperiodic solitons for nonlinear Klein-Gordon equations. This book is of value to mathematicians, physicists, researchers, and advance students.
Structural Analysis Systems: Software—Hardware Capability—Compatibility—Applications, Volume 1 is a practical guidebook on structural analysis systems and their applications. It provides detailed information about a specific software, its postprocessor capabilities and limitations, computer-aided design connection, and compatibility with the most common computers. Several practical examples from industry with computer and user cost are given. This volume consists of 22 chapters and begins with a brief description of the ADINA 84 system and its finite elements, material models, and solution capabilities. The discussion then turns to the analysis interpretive treatise and its database concept; the ANSYS program for engineering analysis; and the structural analysis capabilities of the boundary element analysis system BEASY. The following chapters explore other structural analysis programs such as DEFOR, FLASH, KYOKAI, PAFEC, and PANDA. General purpose finite element and boundary element computer programs for structural and solid mechanics applications are also described. This book will be a valuable resource for practitioners in scientific and industrial disciplines such as mechanical or civil engineering, informatics, applied mathematics, and computer science.
The Architecture of Supercomputers: Titan, A Case Study describes the architecture of the first member of an entirely new computing class, the graphic supercomputing workstation known as Titan. This book is divided into seven chapters. Chapter 1 provides an overview of the Titan architecture, including the motivation, organization, and processes that created it. A survey of all the techniques to speed up computation is presented in Chapter 2. Chapter 3 reviews the issue of particular benchmarks and measures, while Chapter 4 analyzes a model of a concurrency hierarchy extending from the register set to the entire operating system. The architecture of Titan graphics supercomputer and its implementation are considered in Chapter 5. Chapter 6 examines the performance of Titan in terms of the various information flow data rates. The last chapter is devoted to the actual performance on benchmark kernels and how the architecture and implementation affect performance. This publication is recommended for architects and engineers designing processors and systems.
The domain of nonlinear dynamical systems and its mathematical underpinnings has been developing exponentially for a century, the last 35 years seeing an outpouring of new ideas and applications and a concomitant confluence with ideas of complex systems and their applications from irreversible thermodynamics. A few examples are in meteorology, ecological dynamics, and social and economic dynamics. These new ideas have profound implications for our understanding and practice in domains involving complexity, predictability and determinism, equilibrium, control, planning, individuality, responsibility and so on.Our intention is to draw together in this volume, we believe for the first time, a comprehensive picture of the manifold philosophically interesting impacts of recent developments in understanding nonlinear systems and the unique aspects of their complexity. The book will focus specifically on the philosophical concepts, principles, judgments and problems distinctly raised by work in the domain of complex nonlinear dynamical systems, especially in recent years.
Advanced Mathematical Tools for Automatic Control Engineers, Volume 2: Stochastic Techniques provides comprehensive discussions on statistical tools for control engineers. The book is divided into four main parts. Part I discusses the fundamentals of probability theory, covering probability spaces, random variables, mathematical expectation, inequalities, and characteristic functions. Part II addresses discrete time processes, including the concepts of random sequences, martingales, and limit theorems. Part III covers continuous time stochastic processes, namely Markov processes, stochastic integrals, and stochastic differential equations. Part IV presents applications of stochastic techniques for dynamic models and filtering, prediction, and smoothing problems. It also discusses the stochastic approximation method and the robust stochastic maximum principle.
There is an ever increasing need for modelling complex processes reliably. Computational modelling techniques, such as CFD and MD may be used as tools to study specific systems, but their emergence has not decreased the need for generic, analytical process models. Multiphase and multicomponent systems, and high-intensity processes displaying a highly complex behaviour are becoming omnipresent in the processing industry. This book discusses an elegant, but little-known technique for formulating process models in process technology: stochastic process modelling. The technique is based on computing the probability distribution for a single particle's position in the process vessel, and/or the particle's properties, as a function of time, rather than - as is traditionally done - basing the model on the formulation and solution of differential conservation equations. Using this technique can greatly simplify the formulation of a model, and even make modelling possible for processes so complex that the traditional method is impracticable. Stochastic modelling has sporadically been used in various branches of process technology under various names and guises. This book gives, as the first, an overview of this work, and shows how these techniques are similar in nature, and make use of the same basic mathematical tools and techniques. The book also demonstrates how stochastic modelling may be implemented by describing example cases, and shows how a stochastic model may be formulated for a case, which cannot be described by formulating and solving differential balance equations.
Difference equations appear as natural descriptions of observed evolution phenomena because most measurements of time evolving variables are discrete. They also appear in the applications of discretization methods for differential, integral and integro-differential equations. The application of the theory of difference equations is rapidly increasing to various fields, such as numerical analysis, control theory, finite mathematics, and computer sciences. This book is devoted to linear and nonlinear difference equations in a normed space. The main methodology presented in this book is based on a combined use of recent norm estimates for operator-valued functions with the following methods and results: The freezing method The Liapunov type equation The method of majorants The multiplicative representation of solutions
This book is a result of many years of author’s research and teaching on random vibration and control. It was used as lecture notes for a graduate course. It provides a systematic review of theory of probability, stochastic processes, and stochastic calculus. The feedback control is also reviewed in the book. Random vibration analyses of SDOF, MDOF and continuous structural systems are presented in a pedagogical order. The application of the random vibration theory to reliability and fatigue analysis is also discussed. Recent research results on fatigue analysis of non-Gaussian stress processes are also presented. Classical feedback control, active damping, covariance control, optimal control, sliding control of stochastic systems, feedback control of stochastic time-delayed systems, and probability density tracking control are studied. Many control results are new in the literature and included in this book for the first time. The book serves as a reference to the engineers who design and maintain structures subject to harsh random excitations including earthquakes, sea waves, wind gusts, and aerodynamic forces, and would like to reduce the damages of structural systems due to random excitations.
This book gives the reader a survey of hundreds results in the field of the cell and cell associated objects modeling. Applications to modeling in the areas of AIDS, cancers and life longevity are investigated in this book.
For more than forty years, the equation y’(t) = Ay(t) + u(t) in Banach spaces has been used as model for optimal control processes described by partial differential equations, in particular heat and diffusion processes. Many of the outstanding open problems, however, have remained open until recently, and some have never been solved. This book is a survey of all results know to the author, with emphasis on very recent results (1999 to date).The book is restricted to linear equations and two particular problems (the time optimal problem, the norm optimal problem) which results in a more focused and concrete treatment. As experience shows, results on linear equations are the basis for the treatment of their semilinear counterparts, and techniques for the time and norm optimal problems can often be generalized to more general cost functionals.The main object of this book is to be a state-of-the-art monograph on the theory of the time and norm optimal controls for y’(t) = Ay(t) + u(t) that ends at the very latest frontier of research, with open problems and indications for future research.Key features:· Applications to optimal diffusion processes.· Applications to optimal heat propagation processes.· Modelling of optimal processes governed by partial differential equations.· Complete bibliography.· Includes the latest research on the subject.· Does not assume anything from the reader except basic functional analysis.· Accessible to researchers and advanced graduate students alike