Handbook of the History of Logic brings to the development of logic the best in modern techniques of historical and interpretative scholarship. Computational logic was born in the twentieth century and evolved in close symbiosis with the advent of the first electronic computers and the growing importance of computer science, informatics and artificial intelligence. With more than ten thousand people working in research and development of logic and logic-related methods, with several dozen international conferences and several times as many workshops addressing the growing richness and diversity of the field, and with the foundational role and importance these methods now assume in mathematics, computer science, artificial intelligence, cognitive science, linguistics, law and many engineering fields where logic-related techniques are used inter alia to state and settle correctness issues, the field has diversified in ways that even the pure logicians working in the early decades of the twentieth century could have hardly anticipated. Logical calculi, which capture an important aspect of human thought, are now amenable to investigation with mathematical rigour and computational support and fertilized the early dreams of mechanised reasoning: “Calculemus”. The Dartmouth Conference in 1956 – generally considered as the birthplace of artificial intelligence – raised explicitly the hopes for the new possibilities that the advent of electronic computing machinery offered: logical statements could now be executed on a machine with all the far-reaching consequences that ultimately led to logic programming, deduction systems for mathematics and engineering, logical design and verification of computer software and hardware, deductive databases and software synthesis as well as logical techniques for analysis in the field of mechanical engineering. This volume covers some of the main subareas of computational logic and its applications.
Mathematical Logic and Formalized Theories: A Survey of Basic Concepts and Results focuses on basic concepts and results of mathematical logic and the study of formalized theories. The manuscript first elaborates on sentential logic and first-order predicate logic. Discussions focus on first-order predicate logic with identity and operation symbols, first-order predicate logic with identity, completeness theorems, elementary theories, deduction theorem, interpretations, truth, and validity, sentential connectives, and tautologies. The text then tackles second-order predicate logic, as well as second-order theories, theory of definition, and second-order predicate logic F2. The publication takes a look at natural and real numbers, incompleteness, and the axiomatic set theory. Topics include paradoxes, recursive functions and relations, Gödel's first incompleteness theorem, axiom of choice, metamathematics of R and elementary algebra, and metamathematics of N. The book is a valuable reference for mathematicians and researchers interested in mathematical logic and formalized theories.
The Handbook of the History of Logic is a multi-volume research instrument that brings to the development of logic the best in modern techniques of historical and interpretative scholarship. It is the first work in English in which the history of logic is presented so extensively. The volumes are numerous and large. Authors have been given considerable latitude to produce chapters of a length, and a level of detail, that would lay fair claim on the ambitions of the project to be a definitive research work. Authors have been carefully selected with this aim in mind. They and the Editors join in the conviction that a knowledge of the history of logic is nothing but beneficial to the subject's present-day research programmes. One of the attractions of the Handbook's several volumes is the emphasis they give to the enduring relevance of developments in logic throughout the ages, including some of the earliest manifestations of the subject.
Inductive Logic is number ten in the 11-volume Handbook of the History of Logic. While there are many examples were a science split from philosophy and became autonomous (such as physics with Newton and biology with Darwin), and while there are, perhaps, topics that are of exclusively philosophical interest, inductive logic — as this handbook attests — is a research field where philosophers and scientists fruitfully and constructively interact. This handbook covers the rich history of scientific turning points in Inductive Logic, including probability theory and decision theory. Written by leading researchers in the field, both this volume and the Handbook as a whole are definitive reference tools for senior undergraduates, graduate students and researchers in the history of logic, the history of philosophy, and any discipline, such as mathematics, computer science, cognitive psychology, and artificial intelligence, for whom the historical background of his or her work is a salient consideration.
Quantum mechanics is said to be the most successful physical theory ever. It is, in fact, unique in its success when applied to concrete physical problems. On the other hand, however, it raises profound conceptual problems that are equally unprecedented. Quantum logic, the topic of this volume, can be described as an attempt to cast light on the puzzle of quantum mechanics from the point of view of logic. Since its inception in the famous 1936 paper by Birkhoff and von Neumann entitled, “The logic of quantum mechanics,” quantum logic has undergone an enormous development. Various schools of thought and approaches have emerged, and there are a variety of technical results. The chapters of this volume constitute a comprehensive presentation of the main schools, approaches and results in the field of quantum logic.
Quantification and modalities have always been topics of great interest for logicians. These two themes emerged from philosophy andlanguage in ancient times; they were studied by traditional informalmethods until the 20th century. In the last century the tools becamehighly mathematical, and both modal logic and quantification found numerous applications in Computer Science. At the same time many other kinds of nonclassical logics were investigated and applied to Computer Science. Although there exist several good books in propositional modal logics, this book is the first detailed monograph in nonclassical first-order quantification. It includes results obtained during the past thirty years. The field is very large, so we confine ourselves with only two kinds of logics: modal and superintuitionistic. The main emphasis of Volume 1 is model-theoretic, and it concentrates on descriptions of different sound semantics and completeness problem --- even for these seemingly simple questions we have our hands full. The major part of the presented material has never been published before. Some results are very recent, and for other results we either give new proofs or first proofs in full detail.
This volume is number five in the 11-volume Handbook of the History of Logic. It covers the first 50 years of the development of mathematical logic in the 20th century, and concentrates on the achievements of the great names of the period--Russell, Post, Gödel, Tarski, Church, and the like. This was the period in which mathematical logic gave mature expression to its four main parts: set theory, model theory, proof theory and recursion theory. Collectively, this work ranks as one of the greatest achievements of our intellectual history. Written by leading researchers in the field, both this volume and the Handbook as a whole are definitive reference tools for senior undergraduates, graduate students and researchers in the history of logic, the history of philosophy, and any discipline, such as mathematics, computer science, and artificial intelligence, for whom the historical background of his or her work is a salient consideration.
Starting at the very beginning with Aristotle's founding contributions, logic has been graced by several periods in which the subject has flourished, attaining standards of rigour and conceptual sophistication underpinning a large and deserved reputation as a leading expression of human intellectual effort. It is widely recognized that the period from the mid-19th century until the three-quarter mark of the century just past marked one of these golden ages, a period of explosive creativity and transforming insights. It has been said that ignorance of our history is a kind of amnesia, concerning which it is wise to note that amnesia is an illness. It would be a matter for regret, if we lost contact with another of logic's golden ages, one that greatly exceeds in reach that enjoyed by mathematical symbolic logic. This is the period between the 11th and 16th centuries, loosely conceived of as the Middle Ages. The logic of this period does not have the expressive virtues afforded by the symbolic resources of uninterpreted calculi, but mediaeval logic rivals in range, originality and intellectual robustness a good deal of the modern record. The range of logic in this period is striking, extending from investigation of quantifiers and logic consequence to inquiries into logical truth; from theories of reference to accounts of identity; from work on the modalities to the stirrings of the logic of relations, from theories of meaning to analyses of the paradoxes, and more. While the scope of mediaeval logic is impressive, of greater importance is that nearly all of it can be read by the modern logician with at least some prospect of profit. The last thing that mediaeval logic is, is a museum piece. Mediaeval and Renaissance Logic is an indispensable research tool for anyone interested in the development of logic, including researchers, graduate and senior undergraduate students in logic, history of logic, mathematics, history of mathematics, computer science and AI, linguistics, cognitive science, argumentation theory, philosophy, and the history of ideas.
The present volume of the Handbook of the History of Logic is designed to establish 19th century Britain as a substantial force in logic, developing new ideas, some of which would be overtaken by, and other that would anticipate, the century's later capitulation to the mathematization of logic. British Logic in the Nineteenth Century is indispensable reading and a definitive research resource for anyone with an interest in the history of logic.
The present volume of the Handbook of the History of Logic brings together two of the most important developments in 20th century non-classical logic. These are many-valuedness and non-monotonicity. On the one approach, in deference to vagueness, temporal or quantum indeterminacy or reference-failure, sentences that are classically non-bivalent are allowed as inputs and outputs to consequence relations. Many-valued, dialetheic, fuzzy and quantum logics are, among other things, principled attempts to regulate the flow-through of sentences that are neither true nor false. On the second, or non-monotonic, approach, constraints are placed on inputs (and sometimes on outputs) of a classical consequence relation, with a view to producing a notion of consequence that serves in a more realistic way the requirements of real-life inference. Many-valued logics produce an interesting problem. Non-bivalent inputs produce classically valid consequence statements, for any choice of outputs. A major task of many-valued logics of all stripes is to fashion an appropriately non-classical relation of consequence.The chief preoccupation of non-monotonic (and default) logicians is how to constrain inputs and outputs of the consequence relation. In what is called “left non-monotonicity”, it is forbidden to add new sentences to the inputs of true consequence-statements. The restriction takes notice of the fact that new information will sometimes override an antecedently (and reasonably) derived consequence. In what is called “right non-monotonicity”, limitations are imposed on outputs of the consequence relation. Most notably, perhaps, is the requirement that the rule of or-introduction not be given free sway on outputs. Also prominent is the effort of paraconsistent logicians, both preservationist and dialetheic, to limit the outputs of inconsistent inputs, which in classical contexts are wholly unconstrained.In some instances, our two themes coincide. Dialetheic logics are a case in point. Dialetheic logics allow certain selected sentences to have, as a third truth value, the classical values of truth and falsity together. So such logics also admit classically inconsistent inputs. A central task is to construct a right non-monotonic consequence relation that allows for these many-valued, and inconsistent, inputs.The Many Valued and Non-Monotonic Turn in Logic is an indispensable research tool for anyone interested in the development of logic, including researchers, graduate and senior undergraduate students in logic, history of logic, mathematics, history of mathematics, computer science, AI, linguistics, cognitive science, argumentation theory, and the history of ideas.