Skip to main content

Books in Materials science

The Materials Science portfolio includes titles covering core knowledge and new research and applications across the field: nanotechnology and nanomaterials; polymers and plastics; textiles; composites and ceramics; electronic, magnetic, and optical materials; metals and alloys; biomaterials; surface and film science and coating technologies; materials chemistry, and more. In-depth coverage, innovative state-of-the-art approaches, and real-world application examples provide valuable, actionable insights for researchers, students, and the corporate sector. Elsevier's Materials Science portfolio places special attention on areas of current and emerging interest such as additive manufacturing / 3D printing, graphene and 2D materials, smart materials, biomimetics... The content in Elsevier's Materials Science titles program addresses core challenges facing science and society: sustainable energy technologies, the circular economy, health and human welfare.

  • Material Selection for Thermoplastic Parts

    Practical and Advanced Information
    • 1st Edition
    • Michel Biron
    • English
    As new applications are developed and plastics replace traditional materials in a widening spectrum of existing applications, the potential personal injury, property damage, financial and legal consequences of failure can be high. However, nearly half of plastics failure can be traced back to the original specification and selection of the material. This book gives engineers the data they need to make an informed decision about the materials they use in their products, imparting a thorough knowledge of the advantages and disadvantages of the various materials to choose from. The data also suggests other candidate materials which the reader may not have originally considered. More than 30,000 thermoplastics grades are grouped into circa. 300 subfamilies, within which over 20 properties are assessed. The abundance or scarcity of a material and its cost are also often important deciding factors. In this book, an economical overview of the plastics industry helps clarify the actual consumption and costs of thermoplastics including bioplastic, and the relationship of cost vs. performance is also examined for each thermoplastic subfamily. Immediate and long-term common properties are reviewed, including mechanical behavior, impact, thermal properties, and many more. Environmental considerations are also covered, including ease of recycling and sustainability.
  • Bio-Based Plant Oil Polymers and Composites

    • 1st Edition
    • Samy Madbouly + 2 more
    • English
    Bio-based Plant Oil Polymers and Composites provides engineers and materials scientists a useful framework to help take advantage of the latest research conducted in this rapidly advancing field—enabling them to develop and commercialize their own products quickly and more successfully. Plant oil is one of the most attractive options as a substitute for non-renewable resources in polymers and composites, and is producing materials with very promising thermomechanical properties relative to traditional, petroleum-based polymers. In addition to critical processing and characterization information, the book assists engineers in deciding whether or not they should use a plant oil-based polymer over a petroleum-based polymer, discussing sustainability concerns, biodegradability, associated costs, and recommended applications. The book details the advancements in the development of polymeric materials and composites from plant oils, and provides a critical review of current applications in various fields, including packaging, biomedical, and automotive applications. Also includes the latest progress in developing multifunctional biobased polymers—by increasing thermal conductivity or adding antibacterial properties, for example.
  • Poly(Ethylene Terephthalate) Based Blends, Composites and Nanocomposites

    • 1st Edition
    • P.M. Visakh + 1 more
    • English
    Poly(Ethylene Terephthalate) (PET) is an industrially important material which is not treated specifically in any other book. Poly(Ethylene Terephthalate) Based Blends, Composites and Nanocomposites fills this gap and systematically guides the reader through all aspects of PET and its blends, composites and nanocomposites. It covers theoretical fundamentals, nanocomposites preparation, modification techniques, structure-property relationships, characterisation of the different blends and composites, and material choice for specific applications. Consisting of contributions from experts in the field this book is a useful reference for the researchers and engineers working on the development and characterization of PET materials as well as on implementing them in real-world products. It can also be used as a standard reference for deeper insight in the mechanical, thermal, thermo-mechanical and visco-elastic aspects in product design decisions.
  • Vacuum Deposition onto Webs, Films and Foils

    • 3rd Edition
    • Charles Bishop
    • English
    Vacuum Deposition onto Webs: Films and Foils, Third Edition, provides the latest information on vacuum deposition, the technology that applies an even coating to a flexible material that can be held on a roll, thereby offering a much faster and cheaper method of bulk coating than deposition onto single pieces or non-flexible surfaces such as glass. This technology has been used in industrial-scale applications for some time, including a wide range of metalized packaging. Its potential as a high-speed, scalable process has seen an increasing range of new products emerging that employ this cost-effective technology, including solar energy products that are moving from rigid panels onto cheaper and more versatile flexible substrates, flexible electronic circuit ‘boards’, and flexible displays. In this third edition, all chapters are thoroughly revised with a significant amount of new information added, including newly developed barrier measurement techniques, improved in-vacuum monitoring technologies, and the latest developments in Atomic Layer Deposition (ALD).
  • Biopolymers: Applications and Trends

    • 1st Edition
    • Michael Niaounakis
    • English
    Biopolymers: Applications and Trends provides an up-to-date summary of the varying market applications of biopolymers characterized by biodegradability and sustainability. It includes tables with the commercial names and properties of each biopolymer family, along with biopolymers for each marketing segment, not only presenting all the major market players, but also highlighting trends and new developments in products. The book includes a thorough breakdown of the vast range of application areas, including medical and pharmaceutical, packaging, construction, automotive, and many more, giving engineers critical materials information in an area which has traditionally been more limited than conventional polymers. In addition, the book uses recent patent information to convey the latest applications and techniques in the area, thus further illustrating the rapid pace of development and need for intellectual property for companies working on new and innovative products.
  • Laminar Composites

    • 2nd Edition
    • George Staab
    • English
    This reference text provides students and practicing engineers with the theoretical knowledge and practical skills needed to identify, model, and solve structural analysis problems involving continuous fiber laminated composites. The principles are illustrated throughout with numerous examples and case studies, as well as example problems similar in nature to those found in strength of materials texts. A solutions manual is available. Extensive coverage of test methods and experimental techniques distinguished Staab from the many theory-led books on composites, making it ideal for practicing engineers and courses with a practical emphasis. The second edition of Laminar Composites is ideal for engineers with a firm understanding of basic structural analysis discovering for the first time the intricacies of orthotropic material behavior and laminate analysis. The fundamental equations required to formulate and assess the behavior of laminated composites are presented in an easy to follow format. Revised and updated throughout, the second edition also includes three new chapters; beams, plates, shells, each covering aspects such as bending, deformation and vibration accompanied by the relevant equations of equilibrium and motion.
  • Numerical Modelling of Failure in Advanced Composite Materials

    • 1st Edition
    • Pedro P. Camanho + 1 more
    • English
    Numerical Modelling of Failure in Advanced Composite Materials comprehensively examines the most recent analysis techniques for advanced composite materials. Advanced composite materials are becoming increasingly important for lightweight design in aerospace, wind energy, and mechanical and civil engineering. Essential for exploiting their potential is the ability to reliably predict their mechanical behaviour, particularly the onset and propagation of failure. Part One investigates numerical modeling approaches to interlaminar failure in advanced composite materials. Part Two considers numerical modelling approaches to intralaminar failure. Part Three presents new and emerging advanced numerical algorithms for modeling and simulation of failure. Part Four closes by examining the various engineering and scientific applications of numerical modeling for analysis of failure in advanced composite materials, such as prediction of impact damage, failure in textile composites, and fracture behavior in through-thickness reinforced laminates.
  • Complete Casting Handbook

    Metal Casting Processes, Metallurgy, Techniques and Design
    • 2nd Edition
    • John Campbell
    • English
    Campbell’s Complete Casting Handbook: Metal Casting Processes, Techniques and Design, Second Edition provides an update to the first single-volume guide to cover modern principles and processes in such breadth and depth, while also retaining a clear, practical focus. The work has a unique viewpoint, interpreting the behavior of castings, and metals as a whole, in terms of their biofilm content, the largely invisible casting defects which control much of the structure and behavior of metals. This new edition includes new findings, many from John Campbell’s own research, on crack initiation, contact pouring, vortex gates, and the Cosworth Process.
  • Hierarchical Materials Informatics

    Novel Analytics for Materials Data
    • 1st Edition
    • Surya R. Kalidindi
    • English
    Custom design, manufacture, and deployment of new high performance materials for advanced technologies is critically dependent on the availability of invertible, high fidelity, structure-property-p... (SPP) linkages. Establishing these linkages presents a major challenge because of the need to cover unimaginably large dimensional spaces. Hierarchical Materials Informatics addresses objective, computationally efficient, mining of large ensembles of experimental and modeling datasets to extract this core materials knowledge. Furthermore, it aims to organize and present this high value knowledge in highly accessible forms to end users engaged in product design and design for manufacturing efforts. As such, this emerging field has a pivotal role in realizing the goals outlined in current strategic national initiatives such as the Materials Genome Initiative (MGI) and the Advanced Manufacturing Partnership (AMP). This book presents the foundational elements of this new discipline as it relates to the design, development, and deployment of hierarchical materials critical to advanced technologies.
  • Biocomposites: Design and Mechanical Performance

    • 1st Edition
    • Manjusri Misra + 2 more
    • English
    Biocomposites: Design and Mechanical Performance describes recent research on cost-effective ways to improve the mechanical toughness and durability of biocomposites, while also reducing their weight. Beginning with an introduction to commercially competitive natural fiber-based composites, chapters then move on to explore the mechanical properties of a wide range of biocomposite materials, including polylactic, polyethylene, polycarbonate, oil palm, natural fiber epoxy, polyhydroxyalkanoate... polyvinyl acetate, polyurethane, starch, flax, poly (propylene carbonate)-based biocomposites, and biocomposites from biodegradable polymer blends, natural fibers, and green plastics, giving the reader a deep understanding of the potential of these materials.