Skip to main content

Books in Materials science

The Materials Science portfolio includes titles covering core knowledge and new research and applications across the field: nanotechnology and nanomaterials; polymers and plastics; textiles; composites and ceramics; electronic, magnetic, and optical materials; metals and alloys; biomaterials; surface and film science and coating technologies; materials chemistry, and more. In-depth coverage, innovative state-of-the-art approaches, and real-world application examples provide valuable, actionable insights for researchers, students, and the corporate sector. Elsevier's Materials Science portfolio places special attention on areas of current and emerging interest such as additive manufacturing / 3D printing, graphene and 2D materials, smart materials, biomimetics... The content in Elsevier's Materials Science titles program addresses core challenges facing science and society: sustainable energy technologies, the circular economy, health and human welfare.

  • Databook of Plasticizers

    • 2nd Edition
    • Anna Wypych
    • English
    Databook of Plasticizers, Second Edition, contains data on the most important plasticizers in use today, including over 375 generic and commercial plasticizers. The data comes from a range of sources beyond plasticizers' manufacturers, allowing for a detailed comparison of properties between different plasticizers. Over 100 different data fields are provided, from general information, such as molecular structure and formula, to physical properties, health and safety information, ecological properties, and recommendations regarding appropriate use and performance of each plasticizer. The databook is an essential resource for engineers, technicians, and materials scientists responsible for specifying a plasticizer. It provides trustworthy and up-to-date data that is applicable to a range of numerous application areas, such as construction, automotives, food packaging, and more.
  • Handbook of Odors in Plastic Materials

    • 2nd Edition
    • George Wypych
    • English
    Handbook of Odors in Plastic Materials, Second Edition, analyzes the reasons behind unwanted odor formation and the methods for preventing it. The book covers the fundamentals of odor formation and its transport within a material, the relationship between odor and toxicity, and seventeen methods of odor removal. Odor can play a significant role in the success of a product; it can decide whether a customer purchases the product in the first place, or can be the cause of complaints or returns. Similarly, in scented products, the retention of volatile components is a particular challenge and opportunity. There are several factors which have an impact on the formation of odors in plastic materials, including the properties of the polymer, use of additives in processing, exposure to radiation and oxygen, storage, and recycling. Thirty-seven polymers and forty-one critical product groups are analyzed based on the latest research publications and patents. The book also discusses regulations related to odor in products, effects of odor on health and safety, and the effect of odors from plastic materials on indoor air quality.
  • Nanotechnology and Functional Materials for Engineers

    • 1st Edition
    • Yaser Dahman
    • English
    Nanotechnology and Functional Materials for Engineers focuses on key essentials and examples across the spectrum of nanomaterials as applied by engineers, including nanosensors, smart nanomaterials, nanopolymers, and nanotubes. Chapters cover their synthesis and characteristics, production methods, and applications, with specific sections exploring nanoelectronics and electro-optic nanotechnology, nanostructures, and nanodevices. This book is a valuable resource for interdisciplinary researchers who want to learn more about how nanomaterials are used in different types of engineering, including electrical, chemical, and biomedical.
  • Nanoscience and its Applications

    • 1st Edition
    • Osvaldo de Oliveira Jr + 3 more
    • English
    Nanoscience and Its Applications explores how nanoscience is used in modern industry to increase product performance, including an understanding of how these materials and systems, at the molecular level, provide novel properties and physical, chemical, and biological phenomena that have been successfully used in innovative ways in a wide range of industries. This book is an important reference source for early-career researchers and practicing materials scientists and engineers seeking a greater understanding on how nanoscience can be used in modern industries.
  • Mechanical Behaviors of Carbon Nanotubes

    Theoretical and Numerical Approaches
    • 1st Edition
    • K.M. Liew + 2 more
    • English
    Mechanical Behaviors of Carbon Nanotubes: Theoretical and Numerical Approaches presents various theoretical and numerical studies on mechanical behaviors of carbon nanotubes. The main theoretical aspects included in the book contain classical molecular dynamics simulation, atomistic-continuum theory, atomic finite element method, continuum plate, nonlocal continuum plate, and shell models. Detailed coverage is also given to structural and elastic properties, trace of large deformation, buckling and post-buckling behaviors, fracture, vibration characteristics, wave propagation, and the most promising engineering applications. This book not only illustrates the theoretical and numerical methods for analyzing the mechanical behavior of carbon nanotubes, but also contains computational results from experiments that have already taken place.
  • Graphitic Nanofibers

    A Review of Practical and Potential Applications
    • 1st Edition
    • Juzer Jangbarwala
    • English
    The world of nanomaterials is complex; there is dubiety as well as unrealistic optimism about costs, practicality, timing for the availability of, and the true capabilities of products featured in the news. The progress of the industry is being affected from the incertitude generated by the multitudinous names used, coupled with lack of clarity and standardization in the definitions for carbonaceous nanomaterials, such as graphene, graphene oxide, nanographene, nanographene flakes, nanographite flakes, graphene nanoribbons, single-layer graphene, few-layer graphene, nanographite, nanotubes, nanofibers. In this perspicuous book about the carbonaceous nanomaterial domain, the author concisely covers nomenclature, characteristics, applications, costs, and manufacturing; all with the cardinal goal to offer the reader a reality check by delineating the steps to commercialization. Along the way, he also examines the cost impact of the touted applications and the boundaries of market adoption. Through references and personal experience, the author makes a compelling case for the market readiness of a mostly neglected class of nanomaterials known as Graphitic Nanofibers. Includes varied levels of technical focus and financial analyses to appeal to a range of skills and interests.
  • Microfluidics: Modeling, Mechanics and Mathematics

    • 1st Edition
    • Bastian E. Rapp
    • English
    This practical, lab-based approach to nano- and microfluidics provides readers with a wealth of practical techniques, protocols, and experiments ready to be put into practice in both research and industrial settings. The practical approach is ideally suited to researchers and R&D staff in industry; additionally the interdisciplinary approach to the science of nano- and microfluidics enables readers from a range of different academic disciplines to broaden their understanding. Dr Rapp fully engages with the multidisciplinary nature of the subject. Alongside traditional fluid/transport topics, there is a wealth of coverage of materials and manufacturing techniques, chemical modification/surface functionalization, biochemical analysis, and the biosensors involved. As well as providing a clear and concise overview to get started into the multidisciplinary field of microfluidics and practical guidance on techniques, pitfalls and troubleshooting, this book supplies: A set of hands-on experiments and protocols that will help setting up lab experiments but which will also allow a quick start into practical work. A collection of microfluidic structures, with 3D-CAD and image data that can be used directly (files provided on a companion website).
  • Automotive Steels

    Design, Metallurgy, Processing and Applications
    • 1st Edition
    • Radhakanta Rana + 1 more
    • English
    Automotive Steels: Design, Metallurgy, Processing and Applications explores the design, processing, metallurgy, and applications of automotive steels. While some sheet steels are produced routinely in high volume today, there have been significant advances in the use of steel in the automotive industry. This book presents these metallurgical and application aspects in a way that is not available in the current literature. The editors have assembled an international team of experts who discuss recent developments and future prospects for automotive steels, compiling essential reading for both academic and industrial metallurgists, automotive design engineers, and postgraduate students attending courses on the metallurgy of automotive materials.
  • Thermal Stress Analysis of Composite Beams, Plates and Shells

    Computational Modelling and Applications
    • 1st Edition
    • Erasmo Carrera + 1 more
    • English
    Thermal Stress Analysis of Composite Beams, Plates and Shells: Computational Modelling and Applications presents classic and advanced thermal stress topics in a cutting-edge review of this critical area, tackling subjects that have little coverage in existing resources. It includes discussions of complex problems, such as multi-layered cases using modern advanced computational and vibrational methods. Authors Carrera and Fazzolari begin with a review of the fundamentals of thermoelasticity and thermal stress analysis relating to advanced structures and the basic mechanics of beams, plates, and shells, making the book a self-contained reference. More challenging topics are then addressed, including anisotropic thermal stress structures, static and dynamic responses of coupled and uncoupled thermoelastic problems, thermal buckling, and post-buckling behavior of thermally loaded structures, and thermal effects on panel flutter phenomena, amongst others.
  • Quality Management in Plastics Processing

    • 1st Edition
    • Robin Kent
    • English
    Quality Management in Plastics Processing provides a structured approach to the techniques of quality management, also covering topics of relevance to plastics processors. The book’s focus isn’t just on implementation of formal quality systems, such as ISO 9001, but about real world, practical guidance in establishing good quality management. Ultimately, improved quality management delivers better products, higher customer satisfaction, increased sales, and reduced operation costs. The book helps practitioners who are wondering how to begin implementing quality management techniques in their business focus on key management and technical issues, including raw materials, processing, and operations. It is a roadmap for all company operations, from people, product design, sales/marketing, and production – all of which are impacted by, and involved in, the implementation of an effective quality management system. Readers in the plastics processing industry will find this comprehensive book to be a valuable resource.