Moving Towards Fully Autonomous and Cost-Effective Surgical Robotic Systems with AI offers advanced insights into how AI can be used to optimize the design, manufacturing, and clinical application of these systems. It covers a wide range of topics, including the introduction of surgical robotic systems design and the presentation of a fully autonomous surgical robotic system for minimally invasive surgery. Advanced medical imaging techniques integrated with surgical robots are discussed to enhance surgical precision and safety. The book also highlights the application of machine learning and deep learning models in robotic-assisted surgery, with the development of novel algorithms for autonomous surgical robots. Various AI approaches for optimizing surgical robotic systems and the design considerations for manufacturing and assembly are examined. Additionally, the book includes a thorough analysis of the life cycle and economic aspects of surgical robotic systems, as well as risk assessment and evaluation methods. The final chapters address ethics considerations and explore future enhancements in the realm of fully autonomous surgical robotic systems. Overall, this book aims to contribute to the technical understanding, design aspects, and ethical dimensions of surgical robotics, promoting safer and more efficient surgical procedures.
Human-Machine Interfaces in Medical Robotics presents essential and advanced information on developing intuitive human-machine interfaces (HMI) for robotic surgery and rehabilitation. This book provides extensive coverage of multidisciplinary information needed to develop efficient HMI, discussing core technologies of the field, including hand-free control strategies, sensory feedback, data-driven approaches, human-robot shared control, autonomous control, human motor adaption, training, and learning.Arranged in three parts, including interfaces in medical robotics, intelligent machines, and human users, this book provides potential solutions to open questions like what the optimal interface and efficient interaction mode is to facilitate a surgeon’s operation, a patient’s motor control, or human augmentation.
Spatio-Temporal Learning Using Irregular Data for Complex Dynamic Processes introduces learning, modeling, and monitoring methods for highly complex dynamic processes with irregular data. Two classes of robust modeling methods are highlighted, including low-rank characteristic of matrices and heavy-tailed characteristic of distributions. In this class, the missing data, ambient noise, and outlier problems are solved using low-rank matrix complement for monitoring model development. Secondly, the Laplace distribution is explored, which is adopted to measure the process uncertainty to develop robust monitoring models.The book not only discusses the complex models but also their real-world applications in industry.
Introduction to Digital Human Modeling bridges the gap in current literature by providing a comprehensive resource on digital human modeling for beginners and researchers. The content includes step-by-step procedures for building a digital human model, fundamental human kinematics and dynamics, advanced topics such as motion prediction and injury prevention, and industrial applications. The book covers theoretical concepts and experimental validation, including human anatomy, degrees of freedom, skeletal and musculoskeletal modeling, equations of motion, reach envelopes, lifting prediction, muscle fatigue model, and injury analysis. It teaches readers how to build simulation-based human models, set up equations of motion, analyze human biomechanics, and utilize simulations and experiments to study worker injuries. Furthermore, the book introduces both fundamental and advanced digital human modeling methods and optimization techniques aimed at improving performance and preventing injuries in manual material handling, as well as addressing lifting and gait biomechanics and ergonomics.
Cooperative Control of Multi-Agent Systems with Uncertainties proposes a hierarchical design framework that places uncertainties related to system models in the decentralized control layer (bottom layer) and the ones related to the communication (as well as physical interaction) between the agents in the distributed decision-making layer (top layer). The book shows that the two layers meet separation principles under certain conditions so that through the two-layer design framework any challenges can be resolved independently and so that design complexities will not increase with the level of uncertainties.In addition, in order to solve the problem of energy limitation of agents, the book also studies the event-driven cooperative control of multi-agent systems, which can effectively reduce energy consumption of agents and increase their operational lifespan.
Fast Satellite Attitude Maneuver and Control introduces the concept of agile satellites and corresponding fast maneuver attitude control systems, systematically and comprehensively presenting recent research results of fast maneuver attitude control for agile satellites by using advanced nonlinear control techniques. This reference book focuses on modeling and attitude control, considering different actuator combinations, actuator installation deviation, actuator fault, and flexible appendage coupling effect for agile satellites. The book provides a unified platform for understanding and applicability of agile satellites fast maneuverer and stabilization control for different purposes. It will be an excellent resource for researchers working on spacecraft design, nonlinear control systems, vehicle systems and complex control systems.
Fault Diagnosis and Prognosis Techniques for Complex Engineering Systems gives a systematic description of the many facets of envisaging, designing, implementing, and experimentally exploring emerging trends in fault diagnosis and failure prognosis in mechanical, electrical, hydraulic and biomedical systems. The book is devoted to the development of mathematical methodologies for fault diagnosis and isolation, fault tolerant control, and failure prognosis problems of engineering systems. Sections present new techniques in reliability modeling, reliability analysis, reliability design, fault and failure detection, signal processing, and fault tolerant control of engineering systems. Sections focus on the development of mathematical methodologies for diagnosis and prognosis of faults or failures, providing a unified platform for understanding and applicability of advanced diagnosis and prognosis methodologies for improving reliability purposes in both theory and practice, such as vehicles, manufacturing systems, circuits, flights, biomedical systems. This book will be a valuable resource for different groups of readers – mechanical engineers working on vehicle systems, electrical engineers working on rotary machinery systems, control engineers working on fault detection systems, mathematicians and physician working on complex dynamics, and many more.
Modeling, Optimization and Control of Zinc Hydrometallurgical Purification Process provides a clear picture on how to develop a mathematical model for complex industrial processes, how to design the optimization strategy, and how to apply control methods in order to achieve desired production target. This book shares the authors’ recent ideas/methodologies/algorithms on the intelligent manufacturing of complex industry processes, e.g., how to develop a descriptive framework which could enable the digitalization and visualization of a process and how to develop the controller when the process model is not available.
Unmanned Aerial Systems: Theoretical Foundation and Applications presents some of the latest innovative approaches to drones from the point-of-view of dynamic modeling, system analysis, optimization, control, communications, 3D-mapping, search and rescue, surveillance, farmland and construction monitoring, and more. With the emergence of low-cost UAS, a vast array of research works in academia and products in the industrial sectors have evolved. The book covers the safe operation of UAS, including, but not limited to, fundamental design, mission and path planning, control theory, computer vision, artificial intelligence, applications requirements, and more. This book provides a unique reference of the state-of-the-art research and development of unmanned aerial systems, making it an essential resource for researchers, instructors and practitioners.
Instrumentation and Control Systems, Third Edition, addresses the basic principles of modern instrumentation and control systems, including examples of the latest devices, techniques and applications. The book provides a comprehensive introduction on the subject, with Laplace presented in a simple and easily accessible form and complemented by an outline of the mathematics that would be required to progress to more advanced levels of study. Taking a highly practical approach, the author combines underpinning theory with numerous case studies and applications throughout, thus enabling the reader to directly apply the content to real-world engineering contexts. Coverage includes smart instrumentation, DAQ, crucial health and safety considerations, and practical issues such as noise reduction, maintenance and testing. PLCs and ladder programming is incorporated in the text, as well as new information introducing various software programs used for simulation. The overall approach of this book makes it an ideal text for all introductory level undergraduate courses in control engineering and instrumentation.