Proactive Human–Robot Collaboration Toward Human-Centric Smart Manufacturing is driven by an appreciation of manufacturing scenarios where human and robotic agents can understand each other’s actions and conduct mutual-cognitive, predictable, and self-organizing teamwork. Modern factories’ smart manufacturing transformation and the evolution of relationships between humans and robots in manufacturing tasks set the scene for a discussion on the technical fundamentals of state-of-the-art proactive human–robot collaboration; these are further elaborated into the three main steps (i.e., mutual-cognitive and empathic coworking; predictable spatio-temporal collaboration; self-organizing multiagent teamwork) to achieve an advanced form of symbiotic HRC with high-level, dynamic-reasoning teamwork skills. The authors then present a deployment roadmap and several case studies, providing step-by-step guidance for real-world application of these ground-breaking methods which crucially contribute to the maturing of human-centric, sustainable, and resilient production systems. The volume proves to be an invaluable resource that supports understanding and learning for users ranging from upper undergraduate/graduate students and academic researchers to engineering professionals in a variety of industry contexts.
Implementation of Smart Healthcare Systems using AI, IoT, and Blockchain provides imperative research on the development of data fusion and analytics for healthcare and their implementation into current issues in a real-time environment. While highlighting IoT, bio-inspired computing, big data, and evolutionary programming, the book explores various concepts and theories of data fusion, IoT, and Big Data Analytics. It also investigates the challenges and methodologies required to integrate data from multiple heterogeneous sources, analytical platforms in healthcare sectors. This book is unique in the way that it provides useful insights into the implementation of a smart and intelligent healthcare system in a post-Covid-19 world using enabling technologies like Artificial Intelligence, Internet of Things, and blockchain in providing transparent, faster, secure and privacy preserved healthcare ecosystem for the masses.
Internet of Multimedia Things (IoMT): Techniques and Applications disseminates research efforts in the security and resilience of intelligent data-centric critical systems to support advanced research in this area. Sections cover the background of IoMT Architectures and Technologies, describe the problems that arise in IoMT Computing and protocols, and illustrate the application of IoMT on Industrial applications. The book will be beneficial for engineers, developers, solution designers, architects, system engineers and specialists from professional environments interested in the IoMT to seek appropriate solutions to their specific problems.
This book addresses the question of how knowledge is currently documented, and may soon be documented in the context of what it calls ‘semantic publishing’. This takes two forms: a more narrowly and technically defined ‘semantic web’; as well as a broader notion of semantic publishing. This book examines the ways in which knowledge is represented in journal articles and books. By contrast, it goes on to explore the potential impacts of semantic publishing on academic research and authorship. It sets this in the context of changing knowledge ecologies: the way research is done; the way knowledge is represented and; the modes of knowledge access used by researchers, students and the general public.
This useful reference addresses the key tasks that are integral to realtime software development in manufacturing plants: managing the design of the system, setting up and coordinating a development organization, and implementing tools for successfulcompletion and management. Both new and experienced project managers will discover how to use concurrent methodologies to create realtime systems in half the time it usually takes.