Waterborne Pathogens: Detection and Treatment delivers the tools and techniques on how to identify these contaminates and apply the most effective technology for their removal and treatment. Written for researchers and practicing professionals, the book starts with a brief, but readable, review of ubiquitous waterborne pathogens (primarily viruses, bacterial and parasitic protozoa). This coverage is followed by an in-depth discussion of the latest detection and treatment technologies, ranging from Biosensors, to Nanoconjugates, Membrane Based Technologies and Nanotechnology Treatment. Engineers and scientist will find this to be a valuable reference on cutting-edge techniques for suppling safe drinking water across the globe.
Emerging Technologies for Sustainable Desalination Handbook provides professionals and researchers with the latest treatment activities in the advancement of desalination technology. The book enables municipalities and private companies to custom-design sustainable desalination plants that will minimize discharge, energy costs and environmental footprint. Individual case studies are included to illustrate the benefits and drawback of each technique. Sections discuss a multitude of recently developed, advanced processes, along with notable advances made in existing technologies. These processes include adsorption, forward osmosis, humidification and dehumidification, membrane distillation, pervaporation and spray type thermal processes. In addition, theoretical membrane materials, such as nanocomposite and carbon nanotube membranes are also explored. Other chapters cover the desalination of shale gas, produced water, forward osmosis for agriculture, desalination for crop irrigation, and seawater for sustainable agriculture. International in its coverage, the chapters of this handbook are contributed by leading authors and researchers in all relevant fields.
Urban Water Distribution Networks: Assessing Systems Vulnerabilities and Risks provides a methodology for a system-wide assessment of water distribution networks (WDN) based on component analysis, network topology and, most importantly, the effects of a network's past performance on its seismic and/or non-seismic reliability. Water distribution networks engineers and system designers face multiple operational issues in delivering safe and clean potable water to their customers.
Twort's Water Supply, Seventh Edition, has been expanded to provide the latest tools and techniques to meet engineering challenges over dwindling natural resources. Approximately 1.1 billion people in rural and peri-urban communities of developing countries do not have access to safe drinking water. The mortality from diarrhea-related diseases amounts to 2.2 million people each year from the consumption of unsafe water. This update reflects the latest WHO, European, UK, and US standards, including the European Water Framework Directive. The book also includes an expansion of waste and sludge disposal, including energy and sustainability, and new chapters on intakes, chemical storage, handling, and sampling. Written for both professionals and students, this book is essential reading for anyone working in water engineering.
Groundwater contributes to the sustainable development of many Asian cities by providing water for domestic, industrial and agricultural uses and regulating ecosystem flows. However, groundwater has not always been properly managed, which often has resulted in depletion and degradation of the resource. Groundwater Environment in Asian Cities presents the up-to-date scientific knowledge on groundwater environment in fourteen Asian cities using Driver-Pressure-State-Impact-Response (DPSIR) framework. In detail the book presents the facts and figures of groundwater dependency, problems related to groundwater over exploitation, implementation of various policy instruments and management practices and their results in selected fourteen Asian cities, namely; Bandung (Indonesia), Bangkok (Thailand), Beijing (China), Bishkek (Kyrgyzstan), Chitwan (Nepal), Delhi (India), Dili (East Timor), Ho Chi Minh (Vietnam), Hyderabad (India), Khulna (Bangladesh), Lahore (Pakistan), Seoul (South Korea), Tokyo (Japan), and Yangon (Myanmar). The book provides the one-step platform to get sufficient details about groundwater aquifers, hydrogeology, groundwater status, impacts on groundwater environment and responses (technology, policy, institutional, etc.) deployed in the case studies cities, and therefore, provides a snap-shot of Asian groundwater environments. The theoretical background of the topics discussed along with the case studies help the readers understand the similarities and differences about the status of groundwater development and use in each city. In addition, the information in the book will serve as a baseline for other research such as mitigation of groundwater related problems (e.g., land subsidence), impact of climate change on groundwater, and importance of groundwater for implementing sustainable development goals in future.
The MBR Book covers all essential aspects of membrane bioreactors in water and wastewater treatment, including the working principles of MBR technologies. The book aims to separate science from engineering, in an attempt to avoid confusion and to help readers understand the ideas of MBR. The text is divided into five chapters; the membrane and biological aspects are discussed in chapter 2 along with scientific studies. The third chapter covers the design, operation, and maintenance of MBR, including cost modeling and cost benefit analysis. Chapters 4 and 5 cover the commercial MBR products and their applications for water and wastewater treatment, respectively. The text features industrial case studies, along with useful appendices of commercial and international membrane organizations. The book serves as a a primary reference for chemical, environmental, and process engineers, as well as environmental researchers, natural resources researchers, filtration specialists, water company managers, and consultants.
The Integrated Water Resources Management (IWRM) paradigm has been worldwide recognized as the only feasible way currently available to ensure a sustainable perspective in planning and managing water resource systems. It is the inspiring principle of the Water Framework Directive, adopted by the European Union in 2000, as well as the main reference for all the water related activity of UNESCO in the third world countries. However, very often, real world attempts of implementing IWRM fail for the lack of a systematic approach and the inadequacy of tools and techniques adopted to address the intrinsically complex nature of water systems. This book explores recent and important contributions of System Analysis and Control Theory to the technical application of such paradigm and to the improvement of its theoretical basis. Its prior aim is to demonstrate how the modelling and computational difficulties posed by this paradigm might be significantly reduced by strengthening the efficiency of the solution techniques, instead of weakening the integration requirements. The first introductory chapter provides the reader with a logical map of the book, by formalizing the IWRM paradigm in a nine-step decisional procedure and by identifying the points where the contribution of System Analysis and Control Theory is more useful. The book is then organized in three sections whose chapters analyze some theoretical and mathematical aspects of these contributions or presents design applications. The outstanding research issues on the border between System Analysis and IWRM is depicted in the last chapter, where a pull of scientists and experts, coordinated by Prof. Tony Jakeman describe the foreseeable scenario. The book is based on the most outstanding contributions to the IFAC workshop on Modelling and Control for Participatory Planning and Managing Water Systems held in Venice, September 28- October 1, 2004. That workshop has been conceived and organized with the explicit purpose of producing this book: the maximum length of the papers was unusually long (of the size of a book chapter) and only five long oral presentations were planned each day, thus allowing for a very useful and constructive discussion.
Water hammer, or the study of fluid transient behaviour, is one of the most common problems in the water engineering community. This book covers the many causes and solutions in a practical way and is an essential reference for all those concerned with the flow of liquids, not just water, in pipe systems. It follows on from the authors' previous monograph on the problems and solutions of water hammer and presents common problems in the form of case studies.This is an interesting and useful read for practising engineers working in this area and it will enable them to make comparisons with their own problems. Also the practical nature of the book makes it useful for civil engineering departmental libraries and departments where hydraulic design is taught.