This second edition of Nanocrystalline Materials provides updated information on the development and experimental work on the synthesis, properties, and applications of nanocrystalline materials. Nanocrystalline materials with new functionalities show great promise for use in industrial applications — such as reinforcing fillers in novel polymer composites — and substantial progress has been made in the past decade in their synthesis and processing. This book focuses primarily on 1D semiconducting oxides and carbon nanotubes, 2D graphene sheets and 0D nanoparticles (metals and inorganic semiconductors). These materials are synthesized under different compositions, shapes and structures, exhibiting different chemical, physical and mechanical properties from their bulk counterparts. This second edition presents new topics relevant to the fast-paced development of nanoscience and nanotechnology, including the synthesis and application of nanomaterials for drug delivery, energy, printed flash memory, and luminescent materials. With contributions from leading experts, this book describes the fundamental theories and concepts that illustrate the complexity of developing novel nanocrystalline materials, and reviews current knowledge in the synthesis, microstructural characterization, physical and mechanical behavior, and application of nanomaterials.
Ultrananocrystalline Diamond: Synthesis, Properties, and Applications is a unique practical reference handbook. Written by the leading experts worldwide it introduces the science of UNCD for both the R&D community and applications developers using UNCD in a diverse range of applications from macro to nanodevices, such as energy-saving ultra-low friction and wear coatings for mechanical pump seals and tools, high-performance MEMS/NEMS-based systems (e.g. in telecommunications), the next generation of high-definition flat panel displays, in-vivo biomedical implants, and biosensors. This work brings together the basic science of nanoscale diamond structures, with detailed information on ultra-nanodiamond synthesis, properties, and applications. The book offers discussion on UNCD in its two forms, as a powder and as a chemical vapor deposited film. Also discussed are the superior mechanical, tribological, transport, electrochemical, and electron emission properties of UNCD for a wide range of applications including MEMS/ NEMS, surface acoustic wave (SAW) devices, electrochemical sensors, coatings for field emission arrays, photonic and RF switching, biosensors, and neural prostheses, etc.
Single Crystal Growth of Semiconductors from Metallic Solutions covers the four principal growth techniques currently in use for the growth of semiconductor single crystals from metallic solutions. Providing an in-depth review of the state-of-the-art of each, both experimentally and by numerical simulations. The importance of a close interaction between the numerical and experimental aspects of the processes is also emphasized. Advances in the fields of electronics and opto-electronics are hampered by the limited number of substrate materials which can be readily produced by melt-growth techniques such as the Czochralski and Bridgman methods. This can be alleviated by the use of alternative growth techniques, and in particular, growth from metallic solutions. The principal techniques currently in use are: Liquid Phase Epitaxy; Liquid Phase Electroepitaxy; the Travelling Heater Method, and; Liquid Phase Diffusion. Single Crystal Growth of Semiconductors from Metallic Solutions will serve as a valuable reference tool for researchers, and graduate and senior undergraduate students in the field of crystal growth. It covers most of the models developed in recent years. The detailed development of basic and constitutive equations and the associated interface and boundary conditions given for each technique will be very valuable to researchers for the development of their new models.
Crystallography Made Crystal Clear makes crystallography accessible to readers who have no prior knowledge of the field or its mathematical basis. This is the most comprehensive and concise reference for beginning Macromolecular crystallographers, written by a leading expert in the field. Rhodes' uses visual and geometric models to help readers understand the mathematics that form the basis of x-ray crystallography. He has invested a great deal of time and effort on World Wide Web tools for users of models, including beginning-level tutorials in molecular modeling on personal computers. Rhodes' personal CMCC Home Page also provides access to tools and links to resources discussed in the text. Most significantly, the final chapter introduces the reader to macromolecular modeling on personal computers-featuring SwissPdbViewer, a free, powerful modeling program now available for PC, Power Macintosh, and Unix computers. This updated and expanded new edition uses attractive four-color art, web tool access for further study, and concise language to explain the basis of X-ray crystallography, increasingly vital in today's research labs.
Electronic, optical, mechanical and medical appliances are just a few examples of modern applications that use tantalum and niobium. In Chemistry of Tantalum and Niobium Fluoride Compounds, the author draws on thirty years' experience to produce the first ever monograph to systemize and summarize the data available on tantalum and niobium fluoride compounds. This comprehensive reference source offers a rich variety of study methodology and is invaluable to researchers examining the chemistry of fluorides, as well as teachers and students in chemistry and metallurgy.
Crystals are the unacknowledged pillars of modern technology. The modern technological developments depend greatly on the availability of suitable single crystals, whether it is for lasers, semiconductors, magnetic devices, optical devices, superconductors, telecommunication, etc. In spite of great technological advancements in the recent years, we are still in the early stage with respect to the growth of several important crystals such as diamond, silicon carbide, PZT, gallium nitride, and so on. Unless the science of growing these crystals is understood precisely, it is impossible to grow them as large single crystals to be applied in modern industry. This book deals with almost all the modern crystal growth techniques that have been adopted, including appropriate case studies. Since there has been no other book published to cover the subject after the Handbook of Crystal Growth, Eds. DTJ Hurle, published during 1993-1995, this book will fill the existing gap for its readers.The book begins with ""Growth Histories of Mineral Crystals"" by the most senior expert in this field, Professor Ichiro Sunagawa. The next chapter reviews recent developments in the theory of crystal growth, which is equally important before moving on to actual techniques. After the first two fundamental chapters, the book covers other topics like the recent progress in quartz growth, diamond growth, silicon carbide single crystals, PZT crystals, nonlinear optical crystals, solid state laser crystals, gemstones, high melting oxides like lithium niobates, hydroxyapatite, GaAs by molecular beam epitaxy, superconducting crystals, morphology control, and more. For the first time, the crystal growth modeling has been discussed in detail with reference to PZT and SiC crystals.
Since the first publication of this definitive work nearly 40 years ago, this fourth edition has been completely rewritten. Crystallization is used at some stage in nearly all process industries as a method of production, purification or recovery of solid materials. Incorporating all the recent developments and applications of crystallization technology, Crystallization gives clear accounts of the underlying principles, a review of the past and current research themes and guidelines for equipment and process design. This new edition introduces and enlarges upon such subjects as: Control and Separation of polymorphs and chiral crystals Micro- and macro-mixing and the use of computer fluid dynamics Seeding and secondary nucleation in batch crystallization processes Incorporation of upstream and downstream requirements into design procedures for crystallization plant Computer-aided molecular design and its use in crystal habit modifier selection Crystallization provides a comprehensive overview of the subject and will prove invaluable to all chemical engineers and industrial chemists in the process industries as well as crystallization workers and students in industry and academia. Crystallization is written with the precision and clarity of style that is John Mullin's hallmark - a special feature being the large number of appendices that provide relevant physical property data.
Quartz, zeolites, gemstones, perovskite type oxides, ferrite, carbon allotropes, complex coordinated compounds and many moreùall products now being produced using hydrothermal technology. Handbook of Hydrothermal Technology brings together the latest techniques in this rapidly advancing field in one exceptionally useful, long-needed volume. The handbook provides a single source for understanding how aqueous solvents or mineralizers work under temperature and pressure to dissolve and recrystallize normally insoluble materials, and decompose or recycle any waste material. The result, as the authors show in the book, is technologically the most efficient method in crystal growth, materials processing, and waste treatment. The book gives scientists and technologists an overview of the entire subject including:ò Evolution of the technology from geology to widespread industrial use.ò Descriptions of equipment used in the process and how it works.ò Problems involved with the growth of crystals, processing of technological materials, environmental and safety issues.ò Analysis of the direction of today's technology.In addition, readers get a close look at the hydrothermal synthesis of zeolites, fluorides, sulfides, tungstates, and molybdates, as well as native elements and simple oxides. Delving into the commercial production of various types, the authors clarify the effects of temperature, pressure, solvents, and various other chemical components on the hydrothermal processes.
As it results from the very nature of things, the spherical symmetry of the surrounding of a site in a crystal lattice or an atom in a molecule can never occur. Therefore, the eigenfunctions and eigenvalues of any bound ion or atom have to differ from those of spherically symmetric respective free ions. In this way, the most simplified concept of the crystal field effect or ligand field effect in the case of individual molecules can be introduced.The conventional notion of the crystal field potential is narrowed to its non-spherical part only through ignoring the dominating spherical part which produces only a uniform energy shift of gravity centres of the free ion terms. It is well understood that the non-spherical part of the effective potential "seen" by open-shell electrons localized on a metal ion plays an essential role in most observed properties. Light adsorption, electron paramagnetic resonance, inelastic neutron scattering and basic characteristics derived from magnetic and thermal measurements, are only examples of a much wider class of experimental results dependent on it. The influence is discerned in all kinds of materials containing unpaired localized electrons: ionic crystals, semiconductors and metallic compounds including materials as intriguing as high-Tc superconductors, or heavy fermion systems. It is evident from the above that we deal with a widespread effect relative to all free ion terms except those which can stand the lowered symmetry, e.g. S-terms.Despite the universality of the phenomenon, the available handbooks on solid state physics pay only marginal attention to it, merely making mention of its occurrence. Present understanding of the origins of the crystal field potential differs essentially from the pioneering electrostatic picture postulated in the twenties. The considerable development of the theory that has been put forward since then can be traced in many regular articles scattered throughout the literature. The last two decades have left their impression as well but, to the authors' best knowledge, this period has not been closed with a more extended review. This has also motivated us to compile the main achievements in the field in the form of a book.
This book represents a detailed and systematic account of the basic principles, developments and applications of the theory of nucleation.The formation of new phases begins with the process of nucleation and is, therefore, a widely spread phenomenon in both nature and technology. Condensation and evaporation, crystal growth, electrodeposition, melt crystallization, growth of thin films for microelectronics, volcano eruption and formation of particulate matter in space are only a few of the processes in which nucleation plays a prominent role.The book has four parts, which are devoted to the thermodynamics of nucleation, the kinetics of nucleation, the effect of various factors on nucleation and the application of the theory to other processes, which involve nucleation. The first two parts describe in detail the two basic approaches in nucleation theory - the thermodynamic and the kinetic ones. They contain derivations of the basic and most important formulae of the theory and discuss their limitations and possibilities for improvement. The third part deals with some of the factors that can affect nucleation and is a natural continuation of the first two chapters. The last part is devoted to the application of the theory to processes of practical importance such as melt crystallization and polymorphic transformation, crystal growth and growth of thin solid films, size distribution of droplets and crystallites in condensation and crystallization. The book is not just an account of the status quo in nucleation theory - throughout the book there are a number of new results as well as extensions and generalisations of existing ones.