Cyanoximes: Chemistry, Coordination and Organometallic Compounds and their Applications contains vast information about the use of cyanoximes as small molecules ligands in coordination, bioinorganic, and in organometallic chemistry. In addition, it presents the structural chemistry of these compounds and shows their most interesting spectroscopic properties, along with the practical aspects of their chemistry. Methods of syntheses, stereochemistry of cyanoximes ligands, their structures and properties, as well as the most interesting coordination compounds are described, as well as a broad spectrum of practical applications of both cyanoximes and their metal complexes.These simple, low molecular weight organic molecules represent a series of new excellent ampolydentate ligands for coordination chemistry. Currently, 48 cyanoximes are known, and users will find more than two hundreds cyanoxime complexes synthesized and studied using a variety of different spectroscopic methods and X-ray analysis.
Organometallic Chemistry is a comprehensive overview of this important branch of chemistry, including the important role of efficient catalytic systems which address industry, environmental and pharmaceutical problems. Fundamental concepts and industry-related examples are included to give a complete and practical view of the topic. The book begins with fundamentals and then covers various metal coordination, metal-organic frameworks, and bio-inspired multi-metallic catalysis. It concludes with a detailed look at pharmaceutical and environmental applications and future outlooks. Organometallic Chemistry is an ideal reference for organometallic chemists, synthetic organic chemists, and pharmaceutical chemists working in academia or industry.
Electronic Energy Levels of Transition Metal Complexes guides the reader to understand how to comprehensively calculate (predict, reconstruct) electronic energy levels of separation between 0,1 to 30,000 cm-1 in d1 to d9 transition metal complexes. The applied apparatus helps to understand the individual effect of the interelectron repulsion, crystal field strength, spin-orbit coupling and the magnetic field for any symmetry. Symmetry labels can be attached to energy levels (eigenvalues) by analyzing the eigenvectors of the model Hamiltonian either at the level of crystal-field terms or crystal-field multiplets.This book includes basic formulae for matrix elements of the model Hamiltonian and a huge number of results presented as graphs identifying the order of the energy levels and their labelling using the group (double group) irreducible representations. Utilization of the generated energy levels in electron spectroscopy, electron spin resonance and magnetochemistry is presented. Massive modelling was done using the desktop computers.
Comprehensive Organometallic Chemistry, Fifteen Volume Set is the market-leading resource covering all areas of this critical sub-discipline of chemistry. Divided into 15 clear sections, it provides expert coverage of the synthesis, structures, bonding and reactivity of all organometallic compounds, including the mechanisms of the reactions. Applications of organometallic chemistry, such as the role of these compounds as reagents and catalysts for organometallic transformations, and their participation in bioorganometallic chemistry, is then covered. This is a vibrant area, as illustrated by the fact that the 2001, 2005 and 2010 Nobel prizes in Chemistry are all concerned with organometallic chemistry. This new edition will therefore again provide an invaluable and efficient learning resource for all researchers and educators looking for up-to-date analysis of a particular aspect of organometallic chemistry.
Palladacycles: Catalysis and Beyond provides an overview of recent research in palladacycles in catalysis for cross-coupling and similar reactions. In the quest for developing highly efficient and robust palladium-based catalysts for C-C bond formation via cross-coupling reactions, palladacycles have played a significant role. In recent years, they have found a wide variety of applications, ranging from catalysts for cross-coupling and related reactions, to their more recent application as anticancer agents. This book explores early examples of the use of palladacyclic complexes in catalysis employing azobenzene and hydrazobenzene as coordinating ligands. Its applications in processes such as selective reduction of alkenes, alkynes, or nitroalkanes are also covered. Palladacycles: Catalysis and Beyond reveals the tremendous advances that have taken place in the potential applications of palladacycles as versatile catalysts in academia and industry. It is a valuable resource for synthetic chemists, organometallic chemists, and chemical biologists.
Advances in Bioorganometallic Chemistry examines the synthesis, structure and reactivity of bioorganometallics, their pharmaceutical applications, hydrogenase, vitamin B12-like systems, and metalloproteins. It is written by the top researchers in the field and compiled by editors Toshikazu Hirao and Toshiyuki Moriuchi. Developments in this new field of bioorganometallic chemistry, a hybrid between biology and organometallic chemistry, happen very quickly and this comprehensive reference offers the latest research and findings in the field. The book features a discussion of the synthesis, structure, and reactivity of bioorganometallics, and an examination of hydrogenase-like systems, which were designed to demonstrate catalytic activities and functional properties. Advances in Bioorganometallic Chemistry also includes a discussion of bioorganometallics as they relate to medicinal chemistry, specifically applications of metalloproteins, metalloenzymes, and applications in bioimaging. The book concludes with coverage of vitamin B12-like systems, including the latest developments in derivatives designed to perform bio-inspired catalytic reactions. This work is a valuable resource for chemists working in organometallic chemistry and biology, including biochemists, bioorganic chemists, bioinorganic chemists, as well as pharmaceutical scientists, medicinal chemists, and students studying in these areas. Representative authors: R. H. Fish, T. Moriuchi, T. Hirao, H.-B. Kraatz, H. Takaya, T. P. Curran, G. van Koten. E. Rosenberg, J. M. Lynam, C. G. Hartinger, U. Schatzschneider, G. S. Smith, R. Alberto,S. Takenaka, T. Ihara, T. Hayashi, T. Ueno, P. Schollhammer, Y. Shomura, Y. Hisaeda, H. Shimakoshi, B. Kräutler
Pincer Compounds: Chemistry and Applications offers valuable state-of-the-art coverage highlighting highly active areas of research—from mechanistic work to synthesis and characterization. The book focuses on small molecule activation chemistry (particularly H2 and hydrogenation), earth abundant metals (such as Fe), actinides, carbene-pincers, chiral catalysis, and alternative solvent usage. The book covers the current state of the field, featuring chapters from renowned contributors, covering four continents and ranging from still-active pioneers to new names emerging as creative strong contributors to this fascinating and promising area. Over a decade since the publication of Morales-Morales and Jensen’s The Chemistry of Pincer Compounds (Elsevier 2007), research in this unique area has flourished, finding a plethora of applications in almost every single branch of chemistry—from their traditional application as very robust and active catalysts all the way to potential biological and pharmaceutical applications.
Organosilicon Compounds provides readers with the state-of-the-art status of organosilicon chemistry, including its theoretical, synthetic, physico-chemical and applied aspects. By including high quality content in a key strategic signing area, this work is a strong addition to chemistry offerings in organic, main group and organometallic research. Organosilicon chemistry deals with compounds containing carbon–silicon bonds, an essential part of organic and organometallic chemistry. This book presents the many milestone in the field that have been discovered during the last few years, also detailing its usage in commercial products, such as sealants, adhesives and coatings.
Organosilicon Compounds: Experiment (Physico-Chemical Studies) and Applications, volume 2, also contains two parts. In its first part, Experiment (Physico-Chemical Studies), the application of modern instrumental tools (such as X-ray crystallography, 29Si NMR spectroscopy, UV-Photoelectron Spectroscopy, and other methods) for assessing the structures of organosilicon compounds is described. The second part, Applications, reviews the current research in the field of material science, specifically the use of organosilicon compounds in synthetic chemistry directed towards the creation of new materials. Organosilicon Compounds: From Theory to Synthesis to Applications provides a comprehensive overview of this important area of organic and organometallic chemistry, dealing with compounds containing carbon–silicon bonds. This field, which includes compounds that are widely encountered in commercial products such as in the fabrication of sealants, adhesives, and coatings, has seen many milestone discoveries reported during the last two decades. Beginning with the theoretical aspects of organosilicon compounds’ structure and bonding, the book then explores their synthetic aspects, including main group element organosilicon compounds, transition metal complexes, silicon cages and clusters, low-coordinate organosilicon derivatives (cations, radicals, anions, multiple bonds to silicon, silaaromatics), and more. Next, readers will find valuable sections that explore physical and chemical properties of organosilicon compounds by means of X-ray crystallography, 29Si NMR spectroscopy, photoelectron spectroscopy, and other methods. Finally, the work delves into applications for industrial uses and in many related fields, such as polymers, material science, nanotechnology, bioorganics, and medicinal silicon chemistry.
Organosilicon Compounds: Theory and Experiment (Synthesis), volume 1, comprises two parts. The first part, Theory, covers state-of-the-art computational treatments of unusual nonstandard organosilicon compounds that classical bonding theory fails to describe adequately. The second part, Experiment (Synthesis), describes recent synthetic advances in the preparation of a variety of organosilicon compounds with different coordination numbers of the central silicon: from tetracoordinate to low-coordinate to hypercoordinate derivatives. Organosilicon Compounds: From Theory to Synthesis to Applications provides a comprehensive overview of this important area of organic and organometallic chemistry, dealing with compounds containing carbon–silicon bonds. This field, which includes compounds that are widely encountered in commercial products such as in the fabrication of sealants, adhesives, and coatings, has seen many milestone discoveries reported during the last two decades. Beginning with the theoretical aspects of organosilicon compounds’ structure and bonding, the book then explores their synthetic aspects, including main group element organosilicon compounds, transition metal complexes, silicon cages and clusters, low-coordinate organosilicon derivatives (cations, radicals, anions, multiple bonds to silicon, silaaromatics), and more. Next, readers will find valuable sections that explore physical and chemical properties of organosilicon compounds by means of X-ray crystallography, 29Si NMR spectroscopy, photoelectron spectroscopy, and other methods. Finally, the work delves into applications for industrial uses and in many related fields, such as polymers, material science, nanotechnology, bioorganics, and medicinal silicon chemistry.