Particle breakage is an important process within a wide range of solids processing industries, including pharmaceuticals, food, agricultural and mining. Breakage of particles can be defined as intentional and unintentional, depending on whether it is desired or not. Through understanding of the science and underlying mechanisms behind this phenomenon, particle breakage can be either minimised or encouraged within an efficient and effective process. Particle Breakage examines particle breakage at three different length scales, ranging from single particle studies through groups of particles and looking at solid processing steps as a whole. This book is the widest ranging book in the field and includes the most up-to-date techniques such as Distinct Element Method (DEM), Monte Carlo simulations and Population Balance Equations (PBE). This handbook provides an overview of the current state-of-the- art and particle breakage. From the small scale of a single particle, to the study of whole processes for breakage; both by experimental study and mathematical modelling.
Advanced Chemistry of Monolayers at Interfaces describes the advanced chemistry of monolayers at interfaces. Focusing on the recent trends of methodology and technology, which are indispensable in monolayer science. They are applied to monolayers of surfactants, amphiphiles, polymers, dendrimers, enzymes, and proteins, which serve many uses. Introduces the methodologies of scanning probe microscopy, surface force instrumentation, surface spectroscopy, surface plasmon optics, reflectometry, and near-field scanning optical microscopy. Modern interface reaction method, lithographic technology and different types of monolayers like adsorption, Langmuir and Langmuir-Blodgett monolayers at air/liquid, liquid/liquid, liquid/solid and air/solid interfaces, are all covered.
Granulation provides a complete and comprehensive introduction on the state-of-the-art of granulation and how it can be applied both in an academic context and from an industrial perspective. Coupling science and engineering practices it covers differing length scales from the sub-granule level through behaviour through single granules, to bulk granule behaviour and equipment design. With special focus on a wide range of industrially relevant areas from fertilizer production, through to pharmaceuticals. Experimental data is complemented by mathematical modelling in this emerging field, allowing for a greater understanding of the basis of particle products and this important industry sector.Four themes run through the book: 1. The Macro Scale processing for Granulation – including up to date descriptions of the methods used for granulation and how they come about and how to monitor – on-line these changes.2. The Applications of granulation from an industrial perspective, with current descriptive roles and how they are undertaken with relevance to industry, and effective properties.3. Mechanistic descriptions of granulation and the different rate processes occurring within the granulator. This includes methods of modelling the process using Population – Balance Equations, and Multi-level Computational Fluid Dynamics Models.4. The Micro Scale: Granules and Smaller, looking at single granules and there interactions and modelling, while also considering the structure of granules and their constituent liquid bridges.
Theory of Colloid and Interfacial Electric Phenomena is written for scientists, engineers, and graduate students who want to study the fundamentals and current developments in colloid and interfacial electric phenomena, and their relation to stability of suspensions of colloidal particles and nanoparticles in the field of nanoscience and nanotechnology. The primary purpose of this book is to help understand how the knowledge on the structure of electrical double layers, double layer interactions, and electrophoresis of charged particles will be important to understand various interfacial electric phenomena and to improves the reader's skill and save time in the study of interfacial electric phenomena. Also providing theoretical background and interpretation of electrokinetic phenomena and many approximate analytic formulas describing various colloid and interfacial electric phenomena, which will be useful and helpful to understand these phenomena analyse experimental data.
Particles at Interfaces presents recent developments in this growing field and is devoted entirely to the subject of particle transport, deposition and structuring on boundary surfaces. The complex problems which have been studied include concentrated systems of polydisperse and non-spherical particles, bio-particles such as DNA fragments, proteins, viruses, bacteria, cells, polymers, etc. These complex structures undergo transformations under the action of surface forces. Particles at Interfaces provides readily accessible reference data and equations for estimating basic effects, and is mainly addressed to students and young scientists. Consequently, most approaches are of a phenomenological nature, enabling one to derive concrete expressions which describe the basic physics of the problem under consideration. To facilitate access to the information contained in the book most of the relevant formulae and results are compiled in Tables, accompanied with appropriate diagrams. The math is limited to the necessary minimum with emphasis on the physics of the phenomena, defining why they occur, what the kinetics of the processes and the practical implications are.
Activated Carbon Surfaces in Environmental Remediation provides a comprehensive summary of the environmental applications of activated carbons. In order to understand the removal of contaminants and pollutants on activated carbons, the theoretical bases of adsorption phenomena are discussed. The effects of pore structure and surface chemistry are also addressed from both science and engineering perspectives. Each chapter provides examples of real applications with an emphasis on the role of the carbon surface in adsorption or reactive adsorption. The practical aspects addressed in this book cover the broad spectrum of applications from air and water cleaning and energy storage to warfare gas removal and biomedical applications. This book can serve as a handbook or reference book for graduate students, researchers and practitioners with an interest in filtration, water treatment, adsorbents and air cleaning, in addition to environmental policies and regulations.
Given such problems as rejection, the interface between an implant and its human host is a critical area in biomaterials. Surfaces and interfaces for biomaterials summarises the wealth of research on understanding the surface properties of biomaterials and the way they interact with human tissue.The first part of the book reviews the way biomaterial surfaces form. Part Two discusses ways of monitoring and characterising surface structure and behaviour. The final two parts of the book look at a range of in vitro and in vivo studies of the complex interactions between biomaterials and the body. Chapters cover such topics as bone and tissue regeneration, the role of interface interactions in biodegradable biomaterials, microbial biofilm formation, vascular tissue engineering and ways of modifying biomaterial surfaces to improve biocompatibility.Surfaces and interfaces for biomaterials is a standard work on how to understand and control surface processes in ensuring biomaterials are used successfully in medicine.
Volume IV (2005) covers preparation, characterization of colloids, stability and interaction between pairs of particles, and in concentrated systems, their rheology and dynamics. This volume contains two chapters written, or co-authored by J. Lyklema and edited contributions by A.P.Philipse, H.P. van Leeuwen, M. Minor, A. Vrij, R.Tuinier and T. van Vliet. The volume is logically followed by Vol V, but is equally valuable as a stand alone reference.
Volume V is the counterpart of Volume IV and treats hydrophilic colloids and related items. Contains edited contributions on steric stabilization, depletion, polyelectrolytes, proteins at interfaces, association colloids, microemulsions, thin films, foams and emulsions. J. Lyklema is coauthor of two chapters and general editor. Other authors include: G.J. Fleer, F.A.M. Leermakers, M.A. Cohen Stuart, W. Norde, J.A.G. Buijs, J.C. Eriksson, T.Sottmann, R. Strey, D. Platikanov, D. Ekserova, V.Bergeron and P.Walstra.
Radiotracer Studies of Interfaces presents a selection of examples illustrating the application of radiotracer studies for different types of interfaces. The value of radiotracer studies in fields such as food chemistry, corrosion of metals, neurochemistry, biology and catalysis is revealed. Separate chapters are devoted to the environmental problems connected with nuclear reactors and with the nuclear industry in general. The book also presents efforts to minimize and avoid the risk of radioactive contamination in the environment by describing new approaches to the problem.