Interstellar Travel: After Arrival is a comprehensive, technical look at the necessary considerations for settlement on an extra solar planet following interstellar travel, addressed by leading experts in the fields of space development. The book features the current and future plans for lunar, Mars, and asteroid settlement, and how what we learn from such future endeavors might apply to settlement at destinations around other stars. In addition, scientists who have been considering the construction of large space structures and terraforming discuss realistic options to be considered.Other chapters cover necessary considerations such as whether terraforming is possible and how it might be accomplished, the ethical issues and scientific constraints to interacting with an alien biosphere, and what we might learn from settling within our own Solar System that would apply to settling elsewhere. The third book of a three-book compilation, this new release presents up-to-date and realistic technical and scientific considerations of the challenges that settling on an exoplanet would bring, including review of the current technological capabilities and how they might be put towards life on an extra solar planet.
Spatial Cognitive Engine Technology discusses the increase in user demand for satellite wireless communication services that has led to the increasing development of spectrum resources and the fixed spectrum allocation mode which makes the utilization rate of spectrum resources lower. As an intelligent spectrum sharing technology, cognitive radio has innovated the traditional spectrum management system and is one of the effective ways to solve the above-mentioned problems. As the core of satellite cognitive radio, the spatial cognitive engine can use artificial intelligence to dynamically configure working parameters according to changes in the communication environment and user needs.
Interstellar Travel: Purpose and Motivations is a comprehensive, technical look at the necessary considerations for interstellar travel addressed by leading experts in the field, from scientists studying possible destinations (exoplanets) and the vast distances between, to those concerned with building institutions and capabilities in society that could sustain such endeavors. In addition to the technical, medical, and anthropological aspects of deep space travel, the ethics and morality of spreading Earth-based life to other worlds is also examined. In the first book of a three-book compilation, Interstellar Travel: Purpose and Motivations offers in-depth, up-to-date and realistic technical and scientific considerations in the pursuit of interstellar travel and is an integral reference for scientists, engineers, researchers and academics working on, or interested in, space development and space technologies. With a renewed interest in space exploration and development evidenced by the rise of the commercial space sector and various governments now planning to send humans back to the moon and to Mars, so also is interest in taking the next steps beyond the Solar System and to the ultimate destination – planets circling other stars.
Progress in Astronautics and Aeronautics, Volume 18: Thermophysics and Temperature Control of Spacecraft and Entry Vehicles is a selection of technical papers based on two American Institute of Aeronautics and Astronautics meetings, namely, The Thermophysics Specialist Conference, held in Monterey, California on September 13-15, 1965 and the Third Aerospace Sciences Conference, held in New York on January 1966. This book covers the most important problems of thermophysical research and technology. This volume is composed of six parts encompassing 42 chapters. Part I contains papers on the thermal radiation properties of solids, including measuring techniques for solar reflectance and infrared emittance determination, and a paper on radiative transfer. Part II deals with the lunar and planetary thermal environment and includes research papers on emissivities, reflectivities, and polarization by planetary atmospheres and planetary surfaces. Part III discusses the effects of the space environment on the optical properties of thermal control surfaces. This part also presents results of flight experiments with sensors of environmental effects and flight experience with thermal coatings of satellites. Part IV covers the thermophysical measurements of ablative materials and with the char layers formed during the actual vehicle entry period or during laboratory simulation tests. Part V looks into the two comparatively areas of thermophysics, namely, the thermal similitude (thermal modeling) and interface resistance of joints under space conditions. Part VI summarizes the practical experience in thermal design gained on spacecraft flights. Thermophysicists, space engineers and designers, and research workers who are interested in thermophysical technology will find this book invaluable.
Progress in Astronautics and Aeronautics, Volume 20: Thermophysics of Spacecraft and Planetary Bodies: Radiation Properties of Solids and the Electromagnetic Radiation Environment in Space is a collection of technical papers drawn mainly from the American Institute of Aeronautics and Astronautics Thermophysics Specialist Conference, held in New Orleans on April 17-20, 1967. This volume is organized into six part encompassing 45 chapters that offer a selection of the most advanced studies in the dynamic field of thermophysics. Part I deals with radiation properties of solid state materials and the measuring techniques in the laboratory, while Part II describes the thermophysical properties of surfaces used for spacecraft. The papers of Part II also include solid state physics studies of the processes involved in the interaction of UV radiation with solids. Part III discusses the results of thermal flight experiments and on the radiation characteristics of planetary bodies, followed by topics on general radiative properties and the measurements of radiative properties of natural surfaces from satellites in Part IV. Part V contains papers on thermal similitude and on the closely related subject of radiant heat transfer analysis of thermal systems. Lastly, Part VI focuses on the heat transfer within the spacecraft under the conditions of space environment, specifically conductive and radiative transfer. This book is of great value to thermophysicists, space engineers and designers, as well as researchers in the fields of astronautics and aeronautics.
On Earth, lakes provide favorable environments for the development of life and its preservation as fossils. They are extremely sensitive to climate fluctuations and to conditions within their watersheds. As such, lakes are unique markers of the impact of environmental changes. Past and current missions have now demonstrated that water once flowed at the surface of Mars early in its history. Evidence of ancient ponding has been uncovered at scales ranging from a few kilometers to possibly that of the Arctic ocean. Whether life existed on Mars is still unknown; upcoming missions may find critical evidence to address this question in ancient lakebeds as clues about Mars’ climate evolution and its habitability potential are still preserved in their sedimentary record. Lakes on Mars is the first review on this subject. It is written by leading planetary scientists who have dedicated their careers to searching and exploring the questions of water, lakes, and oceans on Mars through their involvement in planetary exploration, and the analysis of orbital and ground data beginning with Viking up to the most recent missions. In thirteen chapters, Lakes on Mars critically discusses new data and explores the role that water played in the evolution of the surface of Mars, the past hydrological provinces of the planet, the possibility of heated lake habitats through enhanced geothermal flux associated with volcanic activity and impact cratering. The book also explores alternate hypotheses to explain the geological record. Topographic, morphologic, stratigraphic, and mineralogic evidence are presented that suggest successions of ancient lake environments in Valles Marineris and Hellas. The existence of large lakes and/or small oceans in Elysium and the Northern Plains is supported both by the global distribution of deltaic deposits and by equipotential surfaces that may reflect their past margins. Whether those environments were conducive to life has yet to be demonstrated but from comparison with our planet, their sedimentary deposits may provide the best opportunity to find its record, if any. The final chapters explore the impact of climate variability on declining lake habitats in one of the closest terrestrial analogs to Mars at the Noachian/Hesperian transition, identify the geologic, morphologic and mineralogic signatures of ancient lakes to be searched for on Mars, and present the case for landing the Mars Science Laboratory mission in such an environment.
Progress in Astronautics and Aeronautics, Volume 9: Electric Propulsion Development covers the proceedings of the Second Electric Propulsion Conference of the American Rocker Society, held in Berkeley, California on March 14-16, 1962. The conference focuses on the existing problems in electric propulsion and their possible solutions. This book is organized into four sections encompassing 35 chapters. The first section deals with the thermodynamics of arcs; the problems of heat and momentum transfer; the chemical processes within arcs; the arc system materials; and the arc jet design problems. The second section considers the problems of ion systems, the various ion sources, and the neutralization of ion beams. This section also looks into the basic ionization processes, the production and charging of heavy particles, the corrosive properties of cesium, and the ion-optical designs. The third section describes various plasma systems, including helical transmission lines, pulsed pinch accelerators, coaxial systems, and j x B accelerators. The theoretical analyses of these systems are briefly examined. The fourth section includes papers on flight testing of electric propulsion models, on vertical rocket probes, and on satellites, This section also discusses some advanced concepts in electric propulsion, such as air scooping during ascent through the atmosphere, systems design and optimization, and planetary and interplanetary missions. This book is of great value to physicists, space engineers and designers, as well as researchers in the fields of astronautics and aeronautics.