Progress in Mosquito Research provides readers with the latest interdisciplinary reviews on the topic. It is an essential reference source for invertebrate physiologists, neurobiologists, entomologists, zoologists, and insect chemists, with Volume 51 focusing on recent progress in mosquito research.
Insect Molecular Genetics, Third Edition, summarizes and synthesizes two rather disparate disciplines—entomology and molecular genetics. This volume provides an introduction to the techniques and literature of molecular genetics; defines terminology; and reviews concepts, principles, and applications of these powerful tools. The world of insect molecular genetics, once dominated by Drosophila, has become much more diverse, especially with the sequencing of multiple arthropod genomes (from spider mites to mosquitoes). This introduction includes discussion of honey bees, mosquitoes, flour beetles, silk moths, fruit flies, aphids, house flies, kissing bugs, cicadas, butterflies, tsetse flies and armyworms. This book serves as both a foundational text and a review of a rapidly growing literature. With fully revised and updated chapters, the third edition will be a valuable addition to the personal libraries of entomologists, geneticists, and molecular biologists.
The publication of the extensive seven-volume work Comprehensive Molecular Insect Science provided a complete reference encompassing important developments and achievements in modern insect science. One of the most swiftly moving areas in entomological and comparative research is molecular biology, and this volume, Insect Molecular Biology and Biochemistry, is designed for those who desire a comprehensive yet concise work on important aspects of this topic. This volume contains ten fully revised or rewritten chapters from the original series as well as five completely new chapters on topics such as insect immunology, insect genomics, RNAi, and molecular biology of circadian rhythms and circadian behavior. The topics included are key to an understanding of insect development, with emphasis on the cuticle, digestive properties, and the transport of lipids; extensive and integrated chapters on cytochrome P450s; and the role of transposable elements in the developmental processes as well as programmed cell death. This volume will be of great value to senior investigators, graduate students, post-doctoral fellows and advanced undergraduate research students. It can also be used as a reference for graduate courses and seminars on the topic. Chapters will also be valuable to the applied biologist or entomologist, providing the requisite understanding necessary for probing the more applied research areas related to insect control.
Advances in Insect Physiology publishes eclectic volumes containing important, comprehensive and in-depth reviews on all aspects of insect physiology. It is an essential reference source for invertebrate physiologists and neurobiologists, entomologists, zoologists and insect biochemists. First published in 1963, the serial is now edited by Steve Simpson (Oxford University, UK).
Biological rhythms, such as the sleep-wake cycle or circadian clock, are an intriguing aspect of biology. The regulation of daily rhythmicity has long been a mystery, up until the mid-1980's when a key gene in the fruitfly, Drosophila melanogaster, was molecularly identified. Genetic and molecular chronobiology of Drosophila has been a driving force in this field of inquiry ever since. Genetics and Molecular Biology of Rhythms in Drosophila and Other Insects describes and evaluates all of the studies of this sort, discussing the manner by which these investigations have spread out in various directions of rhythmic biology, including genetic and molecular approaches used on other insect species.
Insect physiology is currently undergoing revolutionary changes with the increased application of molecular biological techniques to investigate the molecular mechanisms underlying the physiological responses to insect cells. Advances in Insect Physiology is committed to publishing high quality reviews on molecular biology and molecular genetics in areas where they provide an increased understanding of physiological processes in insects. Volume 27 of this classic series continues to provide up-to-date reviews on topical subjects of importance to all invertebrate physiologists and neurobiologists and contains increased coverage on the molecular biology of insect physiology.
Insect physiology is currently undergoing a revolution with the increased application of molecular biological techniques to investigate the molecular mechanisms underlying the physiological responses to insect cells. Advances in Insect Physiology has instituted a commitment to the publication of high quality reviews on molecular biology and molecular genetics in areas where they provide an increased understanding of physiological processes in insects. Volume 25 contains increased coverage on the molecular biology of insect physiology.