Skip to main content

Morgan Kaufmann

  • Designing Technology for an Aging Population

    Towards Universal Design
    • 2nd Edition
    • Jeff Johnson + 1 more
    • English
    Designing User Interfaces for an Aging Population: Towards Universal Design, Second Edition explores the unique needs of older adults in today’s digital landscape. The authors examine this demographic’s wide-ranging sensory, cognitive, physical, and emotional characteristics, connecting each to the challenges and opportunities older users face with technology. Backed by hundreds of global research studies, the book provides actionable design guidelines to enhance satisfaction and usability for seniors. Updated to reflect the latest advances in AI, robotics, and speech recognition, it offers fresh examples and case studies to keep designers informed about emerging trends.Beyond demographics and design principles, the book highlights common pitfalls in technology that can reduce accessibility for older adults. It discusses strategies for involving seniors directly in research and design, ensuring their voices shape digital innovation. The authors emphasize that older users remain underserved and often overlooked in technology studies, urging designers to broaden their approach. By addressing these gaps, the book helps professionals create more inclusive interfaces that better serve a rapidly growing segment of the technology-using population.
  • Digital Twins

    Core Principles and AI Integration
    • 1st Edition
    • Bedir Tekinerdogan + 1 more
    • English
    Digital Twins: Core Principles, System Engineering, and AI Integration provides a comprehensive overview of digital twin technology, a cutting-edge innovation that bridges the physical and digital worlds. The book addresses common challenges such as data integration, security, scalability, and the alignment of digital twin models with actual physical processes. After presenting core concepts of digital twins for software engineering, the book discusses integration with advanced digital solutions such as AI, IoT, Cloud computing, Big Data Analytics, and Extended Reality (XR). Next, the authors provide readers with a thorough presentation of digital twins' applications in a variety of settings and industry/research topics.Finally, the book concludes with a discussion of challenges and solutions, along with future trends in digital twins research and development. As digital twin technology evolves, its integration with various advanced digital solutions is becoming essential for achieving real-time insights and autonomous decision-making. Challenges include understanding the interoperability of these technologies, managing data complexity, ensuring security, and optimizing for low-latency environments.
  • Advances in Multimodal Large Language Models for Healthcare

    Methods and Applications
    • 1st Edition
    • Hari Mohan Pandey + 4 more
    • English
    Advances in Multimodal Large Language Models for Healthcare: Methods and Applications provides valuable insights on Large Language Models in healthcare applications for researchers, academics, and practitioners. The book explains key concepts, including artificial intelligence, machine learning, deep learning, and the evolution of neural networks and transformer models. It then covers generative AI and LLMs for a wide spectrum of healthcare applications, including mental health, clinical decision support, interactive system design, and sensitive analysis. Readers will find this to be a valuable deep dive into the emergent intersection of LLMs and health care, with guidance into applications, technical and programming methods, and more.Although LLMs have shown some promising results in the healthcare sector, numerous challenges need to be addressed before they can be used in patient care. The two key issues with the adoption of LLMs regarding healthcare settings are reliability, transparency, interpretation of results and bias (data and algorithm) management. Unless properly and adequately validated, there may be incorrect medical information provided by the LLM-based systems, which can lead to misdiagnosis or hazardous treatment errors. At this point, LLMs have not only been used for decision making or documentation, they have also proven to be useful in patient engagement through QA systems, medical chatbots, and virtual healthcare.
  • Federated Learning

    Foundations and Applications
    • 1st Edition
    • Rajkumar Buyya + 2 more
    • English
    Federated Learning: Foundations and Applications provides a comprehensive guide to the foundations, architectures, systems, security, privacy, and applications of federated learning. Sections cover fundamental concepts, including machine learning, deep learning, centralized learning, and distributed learning processes. The book then progresses to coverage of the architectures, algorithms, and system models of Federated Learning, as well as security, privacy, and energy-efficiency techniques. Finally, the book presents various applications of Federated Learning through real-world case studies, illustrating both centralized and decentralized Federated Learning.Federated Learning has become an increasingly important machine learning technique because it introduces local data analysis within clients and requires exchange of only model parameters between clients and servers, hence the addition of this new release is ideal for those interested in the topics presented.
  • Data Science and Interactive Visualization Tools for the Analysis of Qualitative Evidence

    • 1st Edition
    • Manuel González Canché
    • English
    Data Science and Interactive Visualization Tools for the Analysis of Qualitative Evidence empowers qualitative and mixed methods researchers in the data science movement by offering no-code, cost-free software access so that they can apply cutting-edge and innovative methods to synthetize qualitative data. The book builds on the idea that qualitative and mixed methods researchers should not have to learn to code to benefit from rigorous open-source, cost-free software that uses artificial intelligence, machine learning, and data visualization tools—just as people do not need to know C++ or TypeScript to benefit from Microsoft Word. The real barrier is the hundreds of R code lines required to apply these concepts to their databases. By removing the coding proficiency hurdle, this book will empower their research endeavors and help them become active members of and contributors to the applied data science community. The book offers a comprehensive explanation of data science and machine learning methodologies, along with access to software application tools to implement these techniques without any coding proficiency. The book addresses the need for innovative tools that enable researchers to tap into the insights that come out of cutting-edge data science tools with absolutely no computer language literacy requirements.
  • Hardware Security

    A Hands-on Learning Approach
    • 2nd Edition
    • Swarup Bhunia + 1 more
    • English
    Hardware Security: A Hands On Learning Approach, Second Edition provides a broad, comprehensive, and practical overview of hardware security that encompasses all levels of the electronic hardware infrastructure. The book covers basic concepts like advanced attack techniques and countermeasures that are illustrated through theory, case studies, and well designed, hands on laboratory exercises for each key concept. The book is ideal as a textbook for upper level undergraduate students studying computer engineering, computer science, electrical engineering, and biomedical engineering, but is also a handy reference for graduate students, researchers and industry professionals.For academic courses, the book contains a robust suite of teaching ancillaries. Users of the book can access schematic, layout and design files for a printed circuit board for hardware hacking (i.e., the HaHa board), a suite of videos that demonstrate different hardware vulnerabilities, hardware attacks and countermeasures, and a detailed description and user manual for companion materials.
  • Essential Kubeflow

    Engineering ML Workflows on Kubernetes
    • 1st Edition
    • Prashanth Josyula + 2 more
    • English
    Essential Kubeflow: Engineering ML Workflows on Kubernetes provides the tools needed to transform ML workflows from experimental notebooks to production-ready platforms. Through hands-on examples and production-tested patterns, readers will master essential skills for building enterprise-grade Machine Learning platforms, including architecting production systems on Kubernetes, designing end-to-end ML pipelines, implementing robust model serving, efficiently scaling workloads, managing multi-user environments, deploying automated MLOps workflows, and integrating with existing ML tools. Whether you're a Machine Learning engineer looking to operationalize models, a platform engineer diving into ML infrastructure, or a technical leader architecting ML systems, this book provides solutions for real-world challenges.With this comprehensive guide to Kubeflow, a widely adopted open source MLOps platforms for automating ML workloads, readers will have the expertise to build and maintain scalable ML platforms that can handle the demands of modern enterprise AI initiatives.
  • Distributed AI in the Modern World

    Technical and Social Aspects of Interacting Intelligent Agents
    • 1st Edition
    • Andrei Olaru + 3 more
    • English
    Distributed AI in the Modern World: Technical and Social Aspects of Interacting Intelligent Agents presents state-of-the-art insights into the various forms of distribution of artificial intelligence, with practical application instances. Sections provide readers with practical solutions at an architectural level, with solutions presented on the distribution of the learning process and the utilization of machine learning models in a distributed system, tools that enable the distribution and interaction of artificial learning entities, how multi-agent systems and machine learning can be combined, the physical embodiment of intelligent agents, and the interaction of intelligent computing units bound to physical space.Following sections emphasize the challenges that are common to all scenarios and solutions that apply in a wider range of cases. This book does not analyze the internal workings of machine learning models (for instance, in the case of multi-agent reinforcement learning), but instead provides readers with an overview of the challenges brought by the need of artificially intelligent entities to interact with other entities and with their environments, along with practical solutions at an architectural level.
  • AI Platforms as Global Governance for the Health Ecosystem

    The Future's Global Hospital
    • 1st Edition
    • Dominique J. Monlezun
    • English
    AI Platforms as Global Governance for the Health Ecosystem: The Future’s Global Hospital provides comprehensive and actionable approaches for readers to understand and optimize responsible AI to create global governance for the healthcare ecosystem. The book explores how AI platforms can transform hospitals and clinical practice by digitally unifying patients, providers, and payors, advancing healthcare for all. Users will find content that defines and explains the main hurdles and technical innovations in responsibly governing AI platforms for efficient, equitable, and sustainable global healthcare.Additiona... sections delve into the history, science, politics, economics, ethics, policy, and future of these AI platforms, and how governance efforts can work toward the common good. Written from the first-hand perspective of a practicing physician-data scientist and AI ethicist, the book maps out how to develop successful governance for AI platforms.
  • Understanding Models Developed with AI

    Including Applications with Python and MATLAB Code
    • 1st Edition
    • Ömer Faruk Ertuğrul + 2 more
    • English
    Understanding Models Developed by AI: Including Applications with Python and MATLAB Code is a comprehensive guide on the intricacies of AI models and their real-world applications. The book demystifies complex AI methodologies by providing clear explanations and practical examples that are reinforced with Python and MATLAB program codes. Its content structure emphasizes a practical, applications-driven approach to understanding AI models, with hands-on coding examples throughout each chapter. Readers will find the tools they need to build AI models, along with the knowledge to make these models accessible and interpretable to stakeholders, thus fostering trust and reliability in AI systems.As the primary issues with the adoption of AI/ML models are reliability, transparency, interpretation of results, and bias (data and algorithm) management, this resource give researchers and developers what they need to be able to not only implement AI models, but also interpret and explain them. This is crucial in industries where decision-making processes must be transparent and understandable.