Skip to main content

Journals in Electronic optical and magnetic materials

11-20 of 23 results in All results

Materials Today

  • ISSN: 1369-7021
  • 5 Year impact factor: 25.4
  • Impact factor: 21.1
Materials Today is the flagship journal of the Materials Today family and is dedicated to covering the most innovative, cutting edge and influential work of broad interest to the materials science community.Having established the journal as one of the most highly respected sources of news and reviews in materials science over the last two decades, Materials Today has expanded its scope to cover ground breaking original research in materials science, and aims to become a leading forum in the field.The editors welcome comprehensive articles and short communications reporting breakthrough discoveries and major technical achievements as well as review articles from established leaders in engaging and rapidly developing fields within materials science and related disciplines.Materials Today offers authors rigorous peer review, rapid publication, and maximum visibility. The journal expects to accept only the most significant submitted manuscripts, but will provide very rapid evaluation to prevent publication delays.The growing Materials Today family provides authors and readers with comprehensive coverage across materials science, spanning ground breaking discoveries to highly specialized research; including such journals as Applied Materials Today, Materials Today Energy, and Materials Today Chemistry - in addition to the dedicated proceedings journal Materials Today: Proceedings, and sound science publication Materials Today Communications.For more information on the wider Materials Today family visit http://www.materialstoday.com/about
Materials Today

Micro and Nanostructures

  • ISSN: 2773-0123
  • 5 Year impact factor: 2.7
  • Impact factor: 2.7
Formerly known as Superlattices and Microstructures, with a 2022 IF of 3.1.Micro and Nanostructures is a journal disseminating the science and technology of micro-structures and nano-structures in materials and their devices, including individual and collective use of semiconductors, metals and insulators for the exploitation of their unique properties. The journal hosts papers dealing with fundamental and applied experimental research as well as theoretical studies. Fields of interest, including emerging ones, cover: • Novel micro and nanostructures • Nanomaterials (nanowires, nanodots, 2D materials ) and devices • Synthetic heterostructures • Plasmonics • Micro and nano-defects in materials (semiconductor, metal and insulators) • Surfaces and interfaces of thin filmsIn addition to Research Papers, the journal aims at publishing Topical Reviews providing insights into rapidly evolving or more mature fields. Written by leading researchers in their respective fields, those articles are commissioned by the Editorial Board.
Micro and Nanostructures

Microelectronic Engineering

  • ISSN: 0167-9317
  • 5 Year impact factor: 2.5
  • Impact factor: 2.6
Nanotechnology and Processing — Electronics, photonics, MEMS and Life Sciences Affiliated with iMNEsMicroelectronic Engineering is the premier journal focused on the fabrication and characterization of micro/nano-electronic materials, devices and circuits (including novel electronic nanomaterials), as well as the understanding of their working mechanisms, performance, yield, variability, stability, and reliability. The journal also focuses on the techniques that make possible the fabrication and characterization of such devices and circuits, and on the materials involved in them. Occasionally, outstanding papers on simulation of materials properties, device figures-of-merit or compact modeling of circuits and systems may be accepted. The following topics are of special interest:DevicesPhotonic and optoelectronic devices (including, sensors, actuators, phototransistors)Transistors (including ultra-scaled, thin film, organic, ferroelectric)Resistive switching devices (memristors, RRAM, PCRAM, FeRAM, MRAM)Magnetic and spintronic devicesMEMS and NEMS (including power, RF, magnetic, organic)Flexible electronic devices (including wearable, printed, paper)Devices for energy harvesting (piezoelectric, flexoelectric, photovoltaic, solar cells)Bioelectronic devices (molecular detection, biomimetic, diagnosis)Device-level simulations (including variability and reliability)MaterialsWide bandgap semiconductorsDielectrics (low K and high K)Two-dimensional (2D) Materials and related transferring techniquesNanotubes, nanowires, and other nanomaterials and nanostrctures for device fabricationInterconnects, metallization and barrier materialsNew Resist MaterialsSilicon on insulatorsPolymers and flexible substrates, including biocompatible materialsAtomistic simulations of materials propertiesFabrication and characterization processesThin films deposition techniques (CVD, ALD, evaporation, sputtering, MBE, plasma)Lithography (including optical, EUV, electron beam, nanoimpring, particle-assisted, mask less, X-ray optical methods, emerging methods and limits, as well as resists)Pattern transfer (including ion, plasma and wet transfer, as well as transfer of 2D materials)Integration processes (including inkjet printing, 3D printing, 3D integration)Top-down and bottom-up self-assembly processesAnnealing and its effect in the materials (including crystallization, wrinkling, de-wetting)Nanometrology (TEM, SEM, EDX, EELS, STM, AFM and related setups)Circuits and applicationsSensing and actuation, including bio-compatible applicationsSignal souring and transferLogic operations and data processingElectronic memories and information storageArtificial neural networks and neuromorphic computingCompact modeling of electronic circuitsQuantum computingFive different types of articles are considered:Research articles that report regular original research that produces significant advancement.Accelerated Publications (Letters) that feature exciting research breakthroughs.Review Articles that inform readers of the latest research and advances in a topic within the broad field of microelectronic engineering. This includes roadmaps and guides proposing the recommended methods in a specific field.Short / Technical notes intended for original limited investigations or short description of original industrial or industrially-related research and development workNews and Opinions that comment on topical issues or express views on the developments in related fields, or comment on previously published work
Microelectronic Engineering

Optical Materials

  • ISSN: 0925-3467
  • 5 Year impact factor: 3.5
  • Impact factor: 3.8
An International Journal on the Physics and Chemistry of Optical Materials and their Applications, including DevicesOptical Materials has an open access companion journal Optical Materials: X which has the same aims and scope, editorial board and peer-review process. To submit to Optical Materials: X visit https://www.editorialmanager.com/OMX/default.aspx.The purpose of Optical Materials is to provide a means of communication and technology transfer between researchers who are interested in materials for potential device applications. The journal publishes original papers and review articles on the design, synthesis, characterisation and applications of optical materials.OPTICAL MATERIALS focuses on:• Optical Properties of Material Systems;• The Materials Aspects of Optical Phenomena;• The Materials Aspects of Devices and Applications.Authors can submit separate research elements describing their data to Data in Brief and methods to Methods X.Manuscripts that focuses on pure computational methodology falls outside of the scope of this journal.Benefits to authors We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services.Please see our Guide for Authors for information on article submission. If you require any further information or help, please visit our Support Center
Optical Materials

Physica B: Condensed Matter

  • ISSN: 0921-4526
  • 5 Year impact factor: 2.4
  • Impact factor: 2.8
Physica B: Condensed Matter comprises all condensed matter physics, including theoretical, computational, and experimental research. These contributions must be accompanied by a thorough discussion of relevant phenomena in condensed matter and materials physics. The journal is welcoming submissions exploring the following areas: • Ordered phenomena: magnetism, ferroelectricity and multiferroics; charge and orbital orderings; spin waves; superconductivity and superfluidity; nematic phases; other ordered phases in condensed matter • Disordered phenomena: amorphous materials and glasses; spin glasses and random field systems; Anderson localization; other disordered phases in condensed matter • Optics: nonlinear optical and Kerr effects; photoluminescence; other optical effects in condensed matter • Strongly correlated systems: heavy fermions; Mott insulators; Hubbard model systems; perovskites, ruthenates; superconductors; transition metal dichalcogenides; and other systems and materials with strong electron correlations • Materials physics: exploration of materials’ properties, such as electrical conductivity, optical, mechanical, thermal, and magnetic properties beyond simple characterization, underlying the material behavior. Metals, oxides, metal-organics, polymers, ceramics, semiconductors, alloys, high entropy alloys, composites, and related materials • Nanostructures and nanomaterials: theoretical and experimental exploration of nanoscale systems, including nanoparticles; nanotubes; nanowires; quantum dots, wires, wells; thin films, and other related nanomaterials • Quantum materials: quantum Hall effect, spintronics, topological insulators, spin-liquid, spin-orbit coupling materials; other materials ruled by quantum mechanical effects • Surfaces and interfaces: theoretical and experimental analyses of surface structure, surface chemistry, and interfaces in materials; applications • Computational materials: exploration of simulation methods (including molecular dynamics, Monte Carlo, and density functional theory) and modeling techniques (such as first-principles calculations, tight-binding models, and uses of machine learning) to understand materials properties or workflow developments in materials design. Investigation of materials design strategies, like high-throughput screening and other computational tools, tailored for condensed matter research Along the submission process, authors are requested to choose one of the following sections for their contribution: • Applied Physics • Computational Materials • Materials Physics • Nanostructures and Quantum Materials • Optics and Photonics • Ordered Phenomena • Strongly Correlated Systems Guide for Authors Please see our Guide for Authors for information on article submission. If you require any further information or help, please visit our Support Center.
Physica B: Condensed Matter

Physica E: Low-Dimensional Systems and Nanostructures

  • ISSN: 1386-9477
  • 5 Year impact factor: 2.7
  • Impact factor: 2.9
Physica E: Low-dimensional systems and Nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals.Both theoretical and experimental contributions are invited. The journal publishes articles on spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena.The journal publishes topics including: topological insulators/superconductors, majorana fermions, Wyel semimetals;quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems;layered superconductivity, low dimensional systems with superconducting proximity effect;2D materials such as transition metal dichalcogenides;oxide heterostructures including ZnO, SrTiO3 etc;carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.)quantum wells and superlattices;quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect;optical- and phonons-related phenomena;magnetic-semiconductor structures;charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling;ultra-fast nonlinear optical phenomena;novel devices and applications (such as high performance sensor, solar cell, etc);novel growth and fabrication techniques for nanostructuresNote Please see our Guide for Authors for information on article submission. If you require any further information or help, please visit our Support Center.
Physica E: Low-Dimensional Systems and Nanostructures

Progress in Crystal Growth and Characterization of Materials

  • ISSN: 0960-8974
  • 5 Year impact factor: 6.2
  • Impact factor: 4.5
"Who dominates materials dominates technology" Dr. Tadahiro SekimotoMaterials especially crystalline materials provide the foundation of our modern technologically driven world. The domination of materials is achieved through detailed scientific research.Advances in the techniques of growing and assessing ever more perfect crystals of a wide range of materials lie at the roots of much of today's advanced technology. The evolution and development of crystalline materials involves research by dedicated scientists in academia as well as industry involving a broad field of disciplines including biology, chemistry, physics, material sciences and engineering. Crucially important applications in information technology, photonics, energy storage and harvesting, environmental protection, medicine and food production require a deep understanding of and control of crystal growth. This can involve suitable growth methods and material characterization from the bulk down to the nano-scale.The knowledge gained requires authentication by publication and peer review. Since the literature is expanding faster than almost any other comparable field of science, it has become increasingly important for the scientific community to fill the need for communication and rapid publication of review articles and conference reports in order to keep abreast of developments in this field. Besides allowing a fast extraction of the available literature and giving state-of the art overviews, the reviews are to inspire scientists across the disciplines and to stimulate "blue-sky thinking".Progress in Crystal Growth and Characterization of Materials is the only review journal on crystal growth and material assessment including novel applications as well as growth and characterization methods, and acts as a rapid publication medium for review articles and conference reports in the field. Emphasis on practical developments and problems ensures its importance also for scientists in industry.Notes to authorsNote regarding self-submissionProgress in Crystal Growth and Characterization of Materials is a review journal. The content is directly commissioned by the Editorial Board. If you wish to publish a review in the journal, please email to the journal box at [email protected] with the subject line "Proposition of a review - NAME". Your email must contain the following: Proposed titleList of all authors and their affiliation(s)Corresponding author' nameCorresponding author' emailCover letterAbstractProposed date of submissionYour proposal will be evaluated by the Editorial Board, and it will convey their decision directly to you.Progress in Crystal Growth and Characterization of Materials is a review journal. It doesn't publish research articles. If you wish to submit a research article, the Journal of Crystal Growth would be honored to consider the submission.Note regarding permissionsProgress in Crystal Growth and Characterization of Materials now offers help with obtaining permissions for re-using figures and tables at the various publishers to authors of invited review papers. In order to make use of this service, please contact your publishing contact and provide a list of all material (including your own material) that is being re-used in your review article. This information will be forwarded to our Permissions helpdesk, who will obtain the necessary permissions on your behalf.
Progress in Crystal Growth and Characterization of Materials

Progress in Materials Science

  • ISSN: 0079-6425
  • 5 Year impact factor: 41.2
  • Impact factor: 33.6
Progress in Materials Science publishes authoritative and critical reviews of recent advances in the science of materials and their exploitation in engineering and other applications. Authors of reviews in Progress in Materials Science are active leaders in materials science and have a strong scientific track record in the field of the review. Emphasis is placed on the fundamental aspects of the subject, particularly those concerning microstructure and nanostructure and their relationship to properties (mechanical, chemical, electrical, magnetic, optical or biomedical) including the atomistic and electronic nature of condensed phases. Also desirable subject matters are the thermodynamics, kinetics, mechanisms and modelling of processes which occur within solids, liquids and other condensed phases; experiments and models which help in understanding the macroscopic properties of materials in terms of microscopic mechanisms; and work which advances the understanding of the use of materials in engineering, healthcare and other applications. Materials of interest are metallic, ceramic, polymeric, biological, medical and composite in all forms. Manuscripts are generally of greater length than those found in journals specialising in research papers.The focus of the journal is invited reviews, but interested authors may submit a proposal for consideration. The Editors kindly request that all non-invited manuscripts are preceded by the submission of a proposal.Benefits to authors We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services.Please see our Guide for Authors for information on article submission. If you require any further information or help, please visit our Support Center
Progress in Materials Science

Progress in Quantum Electronics

  • ISSN: 0079-6727
  • 5 Year impact factor: 10.5
  • Impact factor: 7.4
An International Review Journal, published since 1969Progress in Quantum Electronics is an international review journal devoted to the dissemination of new, specialized topics at the forefront of quantum electronics and its applications. The journal publishes papers dealing with theoretical or experimental aspects of contemporary research such as advances in the physics, technology and engineering of subjects of relevance to quantum electronics. In addition, papers with new knowledge in interdisciplinary research (e.g. including bio and/or nano related work) are encouraged.Authors are encouraged to write articles of relevance to a wide readership including both those established in this field of research and non-specialists working in related areas.Benefits to authors We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services.Please see our Guide for Authors for information on article submission. If you require any further information or help, please visit our Support Center
Progress in Quantum Electronics

Scripta Materialia

  • ISSN: 1359-6462
  • 5 Year impact factor: 5.7
  • Impact factor: 5.3
Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The scope and aims of Scripta Materialia are identical to Acta MaterialiaScripta Materialia prioritizes papers that significantly move the field forward, advancing the thinking in the field and providing mechanistic processing-structure-property connections. Explorations of such connections by experiment, computation, theory, data science, and machine learning are all welcome; studies that connect across theory, computation, and experiment through mechanistic means are especially relevant. Materials structure at all scales is of interest, from electronic, atomic, and molecular arrangements to microstructural elements, including crystal defects, polycrystalline and polyphase structures, and spanning to macrostructures formed by processing that impact properties and performance. The connection of these structural features to all kinds of properties is of interest, including mechanical and functional properties, thermodynamics and kinetics, phase transformations, etc. In addition to original contributions, Scripta Materialia publishes comments on papers published in Acta Materialia and Scripta Materialia. The journal also publishes Viewpoints, which are invited short articles focused on topics of current interest within the scope of the journal and coordinated by invited guest editors.
Scripta Materialia