Sensing and Biosensing with Optically Active Nanomaterials summarizes the potential sensing applications of optically (chromogenic and fluorogenic) active, nano-sized, organic, and inorganic materials for the selective detection of ionic analytes (such as metal ions and anions) in various environmental and biological samples. Sections cover design, synthesis, sensing mechanisms and applications for detecting ionic analytes. Each chapter deals with the sensing applications of one kind of nanomaterial. This book is an important reference source for materials scientists and engineers seeking to increase their understanding on how nanomaterials are being used for sensing applications.
Making Hands: The Design and Use of Upper Extremity Prosthetics provides a historical account of the development of upper extremity prostheses. It describes different aspects surrounding the development of key elements of mechanisms and control, for prosthetic hands and arms, and includes biographical sketches of some key contributors. The field is broad and uses knowledge from a wide range of disciplines. Sections cover the background to give researchers and professionals what they need to learn about adjacent fields. The author's expertise on the control of prostheses makes this a very comprehensive resource on the topic.
Now in its Third Edition, Fundamentals of Optical Waveguides continues to be an essential resource for any researcher, professional or student involved in optics and communications engineering. Any reader interested in designing or actively working with optical devices must have a firm grasp of the principles of lightwave propagation. Katsunari Okamoto continues to present this difficult technology clearly and concisely with several illustrations and equations. Optical theory encompassed in this reference includes coupled mode theory, nonlinear optical effects, finite element method, beam propagation method, staircase concatenation method, along with several central theorems and formulas. Silicon photonics devices such as coupled resonator optical waveguides (CROW), lattice-form filters, and AWGs are also fully described. This new edition gives readers not only a thorough understanding the silicon photonics devices for on-chip photonic network, but also the capability to design various kinds of devices.
The purpose of aligning short fibers in a fiber-reinforced material is to improve the mechanical properties of the resulting composite. Aligning the fibers, generally in a preferred direction, allows them to contribute as much as possible to reinforcing the material. The first edition of this book detailed, in a single volume, the science, processing, applications, characterization and properties of composite materials reinforced with short fibers that have been orientated in a preferred direction by flows arising during processing. The technology of fiber-reinforced composites is continually evolving and this new edition provides timely and much needed information about this important class of engineering materials. Each of the original chapters have been brought fully up-to-date and new developments such as: the advent of nano-composites and the issues relating to their alignment; the wider use of long-fiber composites and the appearance of models able to capture their orientation during flow; the wider use of flows in micro-channels in the context of composites fabrication; and the increase in computing power, which has made relevant simulations (especially coupling flow kinematics to fiber content and orientation) much easier to perform are all covered in detail. The book will be an essential up-to-date reference resource for materials scientists, students, and engineers who are working in the relevant areas of particulate composites, short fiber-reinforced composites or nanocomposites.
Environmental Water Requirements in Mountainous Areas presents comprehensive and scientifically sound approaches and methodologies for estimating the environmental water requirements and tradeoffs for water allocation by analyzing anthropogenic and natural water needs. The book covers environmental water management issues in mountainous areas, specifically focusing on the Mediterranean region which exhibits significant contrasts in its demographic and hydrologic features. The authors include paradigms and information that will be useful for water resources managers, decision makers, scientists working in the fields of ecology and water resources management, engineers that design hydraulic works, and environmental policymakers.
Recent Advances in Renewable Energy Technologies is a comprehensive reference covering critical research, laboratory and industry developments on renewable energy technological, production, conversion, storage, and management, including solar energy systems (thermal and photovoltaic), wind energy, hydropower, geothermal energy, bioenergy and hydrogen production, and large-scale development of renewable energy technologies and their impact on the global economy and power capacity. Technological advancements include resources assessment and deployment, materials performance improvement, system optimization and sizing, instrumentation and control, modeling and simulation, regulations, and policies.Each modular chapter examines recent advances in specific renewable energy systems, providing theoretical and applied aspects of system optimization, control and management and supports them with global case studies demonstrating practical applications and economical and environmental aspects through life cycle analysis. The book is of interest to engineering graduates, researchers, professors and industry professionals involved in the renewable energy sector and advanced engineering courses dealing with renewable energy, sources, thermal and electrical energy production and sustainability.
Functional Materials Processing for Switchable Device Modulation focuses on the advances of nanofabrication that underpin emerging technologies, including electronic devices. The book provides readers with a broad view of the materials’ perspectives, including historical context and background, along with future opportunities for smart electronic and switchable devices. A major focus in the book is on the research and development of synthetic materials for spectroscopic analysis which broadly deals with science and technology of materials on the atomic and molecular scale. The book reviews the materials and advances in research for switchable electronics for bioelectronic, sensing and optoelectronic applications. In addition, key challenges and emerging opportunities in innovations in surface modification and novel functional materials device implementation for industrial scale reproducibility are discussed. The book covers the applications and market potential for a variety of media, including mirrors, glazing/coatings, and display products. The physics, electrochemistry, device design and materials are detailed, with performance compared between the most relevant and emerging switchable technologies.
Smart Home Technologies and Services for Geriatric Rehabilitation provides a toolbox for healthcare stakeholders involved in decision-making for the design, development and implementation of smart home solutions. The book provides an in-depth look at the field of smart homes with readers from both research and practice in mind. It addresses the roles and contributions of smart home technologies and services in supporting geriatric rehabilitation and discusses the challenges of current practice and future innovation, especially with wireless technology and 5G advancements. This reference offers advice on how to implement solutions in the home, and how to framework the modalities of modifying and measuring responses to rehabilitation interventions in geriatric populations. Acceptability, usability and adherence are all considered. Content coverage includes how to navigate policies, regulations, standards and how to build business models. The book's editorial team is multidisciplinary, multisectoral, and from very different regions of the world, thus ensuring a comprehensive scope and global approach.
Landslide Hazards, Risks and Disasters Second Edition makes a broad but detailed examination of major aspects of mass movements and their consequences, and provides knowledge to form the basis for more complete and accurate monitoring, prediction, preparedness and reduction of the impacts of landslides on society. The frequency and intensity of landslide hazards and disasters has consistently increased over the past century, and this trend will continue as society increasingly utilises steep landscapes. Landslides and related phenomena can be triggered by other hazard and disaster processes – such as earthquakes, tsunamis, volcanic eruptions and wildfires – and they can also cause other hazards and disasters, making them a complex multi-disciplinary challenge. This new edition of Landslide Hazards, Risks and Disasters is updated and includes new chapters, covering additional topics including rockfalls, landslide interactions and impacts and geomorphic perspectives. Knowledge, understanding and the ability to model landslide processes are becoming increasingly important challenges for society extends its occupation of increasingly hilly and mountainous terrain, making this book a key resource for educators, researchers and disaster managers in geophysics, geology and environmental science.
Biofuels and Bioenergy: Opportunities and Challenges is the first of two volumes that address the technological developments and challenges in the production of a broad range of biofuels and bioenergy products from renewable feedstock. The book emphasizes the opportunities and challenges involved in various processes including fermentation, transesterification, microbial fuels cells, liquefaction, gasification, and pyrolysis. These are also considered from a biorefinery perspective and discuss all common biomass feedstocks. In addition, the book presents new research on microalgae from waste water treatment, large scale production of microalgae, microbial biooil production, biogas production, computational tools for manipulation of metabolic pathway for enhanced biogas production, production of biofuel from genetically modified microalgal biomass, techno-economic analysis, environmental impact and life cycle analysis. Biofuels and Bioenergy is an ideal reference on the latest research for researchers and students working in the area of biofuels and renewable energy.