The rapid development of artificial intelligence technology in medical data analysis has led to the concept of radiomics. This book introduces the essential and latest technologies in radiomics, such as imaging segmentation, quantitative imaging feature extraction, and machine learning methods for model construction and performance evaluation, providing invaluable guidance for the researcher entering the field. It fully describes three key aspects of radiomic clinical practice: precision diagnosis, the therapeutic effect, and prognostic evaluation, which make radiomics a powerful tool in the clinical setting. This book is a very useful resource for scientists and computer engineers in machine learning and medical image analysis, scientists focusing on antineoplastic drugs, and radiologists, pathologists, oncologists, as well as surgeons wanting to understand radiomics and its potential in clinical practice.
Thermoelectricity and Advanced Thermoelectric Materials reviews emerging thermoelectric materials, including skutterudites, clathrates, and half-Heusler alloys. In addition, the book discusses a number of oxides and silicides that have promising thermoelectric properties. Because 2D materials with high figures of merit have emerged as promising candidates for thermoelectric applications, this book presents an updated introduction to the field of thermoelectric materials, including recent advances in materials synthesis, device modeling, and design. Finally, the book addresses the theoretical difficulties and methodologies of computing the thermoelectric properties of materials that can be used to understand and predict highly efficient thermoelectric materials. This book is a key reference for materials scientists, physicists, and engineers in energy.
Waste and By-Products in Cement-Based Materials: Innovative Sustainable Materials for a Circular Economy covers various recycled materials, by-products and wastes that are suitable for the manufacture of materials within the spectrum of so-called cement-based materials (CBM). Sections cover wastes for replacement of aggregates in CBM, focus on the application of wastes for the replacement of clinker and mineral additions in the manufacture of binders, discuss the optimization process surrounding the manufacture of recycled concrete and mortars, multi-recycling, advanced radiological studies, optimization of self-compacting concrete, rheology properties, corrosion prevention, and more. Final sections includes a review of real-scale applications that have been made in recent years of cement-based materials in roads, railway superstructures, buildings and civil works, among others, as well as a proposal of new regulations to promote the use of waste in the manufacture of CBM.
Magnetic skyrmions are particle-like objects described by localized solutions of non-linear partial differential equations. Up until a few decades ago, it was believed that magnetic skyrmions only existed in condensed matter as short-term excitations that would quickly collapse into linear singularities. The contrary was proven theoretically in 1989 and evidentially in 2009. It is now known that skyrmions can exist as long-living metastable configurations in low-symmetry condensed matter systems with broken mirror symmetry, increasing the potential applications possible. Magnetic Skyrmions and their Applications delves into the fundamental principles and most recent research and developments surrounding these unique magnetic particles. Despite achievements in the synthesis of systems stabilizing chiral magnetic skyrmions and the variety of experimental investigations and numerical calculations, there have not been many summaries of the fundamental physical principles governing magnetic skyrmions or integrating those concepts with methods of detection, characterization and potential applications. Magnetic Skyrmions and their Applications delivers a coherent, state-of-the-art discussion on the current knowledge and potential applications of magnetic skyrmions in magnetic materials and device applications. First the book reviews key concepts such as topology, magnetism and materials for magnetic skyrmions. Then, charactization methods, physical mechanisms, and emerging applications are discussed.
Bionanocomposites in Tissue Engineering and Regenerative Medicine explores novel uses of these in tissue engineering and regenerative medicine. This book offers an interdisplinary approach, combining chemical, biomedical engineering, materials science and pharmacological aspects of the characterization, synthesis and application of bionanocomposites. Chapters cover a broad selection of bionanocomposites including chitosan, alginate and more, which are utilized in tissue engineering, wound healing, bone repair, drug formulation, cancer therapy, drug delivery, cartilage regeneration and dental implants. Additional sections of Bionanocomposites in Tissue Engineering and Regenerative Medicine discuss, in detail, the safety aspects and circular economy of bionanocomposites – offering an insight into the commercial and industrial aspects of these important materials. Bionanocomposites in Tissue Engineering and Regenerative Medicine will prove a highly useful text for for those in the fields of biomedical engineering, chemistry, pharmaceutics and materials science, both in academia and industrial R&D groups.
Biodegradable Polymers and Composites - Process Engineering to Commercialization is designed in such a way that it not only gives basic knowledge but also contains information regarding conventional and advanced technologies, socio-economic aspects, techno-economic feasibility, modelling tools and detailed Life Cycle Analysis in biopolymer production. The book discusses the advantages and importance of biopolymers over the conventionally produced plastics. Biodegradable Polymers and Composites highlights: the conventional and advanced strategies for biopolymer production; information regarding process engineering and commercialization of biopolymers; models and available modelling techniques in the sector of biopolymer production; and global case studies, opportunities and challenges (technical constraints, institutional constraints and social constraints) associated with biopolymer production.
MicroLEDs', Volume 106 is currently recognized as the ultimate display technology and one of the fastest-growing technologies in the world as technology giants utilize it on a wide-ranging set of products. This volume combines contributions from MicroLED pioneers and world’s leading experts in the field who focus on the MicroLED development, current cutting-edge technologies of pursuing for realizing MicroLED large flat panel displays and televisions, virtual reality and 3D displays, light source for LI-FI data communications, neural interface and optogenetics, and future MicroLED technology trends.
Annual Reports on NMR Spectroscopy, Volume 103, the latest release in a series that has established itself as a premier resource for both specialists and non-specialists interested in new techniques and applications pertaining to NMR spectroscopy includes a variety of updated chapters covering Recent Applications of 17O Solid State NMR in Biochemistry, NMR Studies of Ferromagnetic Materials, Very Fast MAS Solid State NMR Studies of Pharmaceuticals, Recent Advances in Benchtop NMR and Applications, Ultra-Fast Magic Angle Spinning Nuclear Magnetic Resonance.
A concise reference on the structural composition and function of microbial communities in coastal environments, especially in relation to natural and anthropogenic impacts. Microbial Communities in Coastal Sediments presents twenty years of coastal microbiology research, grounding it as a vital development in the field of microbial ecology. It is the first book to focus exclusively on the complex microbial ecology and its function in rest of the marine environment. The book outlines the structure, function, and assessment of microbial communities in marine sediments while exploring practical methods of assessment. It is an invaluable resource to aquatic microbiologists, marine ecologists, marine microbiologists, aquatic researchers, and graduate students in this field. Microbial Communities in Coastal Sediments begins with an examination of nutrient sources in the coastal context with a focus on organic matter inputs. The quantity and quality of organic matter in coastal sediments and their impacts on the composition and formation of microbial communities is discussed. The book explores the consequences of anthropogenic changes and human activity on microbial ecology and nutrient cycling. Sections on nutrient availability, green house gas production and biodegradation of persistent organic pollutants provide essential details. Molecular research techniques and methods for assessing microbial community structure and function in coastal sediments are also covered.
Polysaccharide-Based Nanocomposites for Gene Delivery and Tissue Engineering presents quantitative background on new polysaccharide nanocomposites in a clear and logical way, highlighting the most exciting applications in gene delivery and tissue engineering and their progress. The book focuses on the different types of polysaccharide nanocomposites for gene delivery and tissue engineering and covers polysaccharide hydrogels for tissue engineering and polysaccharide magnetic nanocomposites for gene delivery. Chapters cover various nanocomposites presented in twenty-one separate chapters. This book will be of great interest to all those researching the development and applications of polysaccharide-based nanocomposites for modeling. As polysaccharide-based nanocomposites promise cutting-edge applications in gene delivery and tissue engineering, with their development at the forefront of modern medicine, this book is a welcome title on this exciting science.