Nanotechnology for CO2 Utilization in Oilfield Applications delivers a critical reference for petroleum and reservoir engineers to learn the latest advancements of combining the use of CO2 and nanofluids to lower carbon footprint. Starting with the existing chemical and physical methods employed for synthesizing nanofluids, the reference moves into the scalability and fabrication techniques given for all the various nanofluids currently used in oilfield applications. This is followed by various, relevant characterization techniques. Advancing on, the reference covers nanofluids used in drilling, cementing, and EOR fluids, including their challenges and implementation problems associated with the use of nanofluids. Finally, the authors discuss the combined application of CO2 and nanofluids, listing challenges and benefits of CO2, such as carbonation capacity of nanofluids via rheological analysis for better CO2 utilization. Supported by visual world maps on CCS sites and case studies across the industry, this book gives today’s engineers a much-needed tool to lower emissions.
Innovations in Fermentation and Phytopharmaceutical Technologies discusses recent advancements in the field of different bioprocessing aspects for the development of different reactors, fermented products and phytopharmaceuticals. Written by leading experts in the field, the book presents the basic principles of upstream processing techniques, advanced downstream process technologies, and recycling of by-products during formation/production of various fermented and phytopharmaceutical products. The informative chapters in the book outline an application-oriented path for academicians, researchers and scientists in the field of industrial fermentation technology and phytopharmaceutical production.
Simulation, Sixth Edition continues to introduce aspiring and practicing actuaries, engineers, computer scientists and others to the practical aspects of constructing computerized simulation studies to analyze and interpret real phenomena. Readers will learn to apply the results of these analyses to problems in a wide variety of fields to obtain effective, accurate solutions and make predictions. By explaining how a computer can be used to generate random numbers and how to use these random numbers to generate the behavior of a stochastic model over time, this book presents the statistics needed to analyze simulated data and validate simulation models.
Oxygen Reduction Reaction: Fundamentals, Materials and Applications covers the design, synthesis and performance efficacies of the entire spectrum of oxygen reduction catalysts, extrapolating down to their applications in practical, alternative, renewable energy devices. Catalysts covered include heme inspired iron-based, heme inspired non-iron-based, non-heme-based, noble metal-based, non-noble metal-based and metal-free homogeneous and heterogeneous catalysts. The book contains critical analyses and opinions from experts around the world, making it of interest to scientists, engineers, industrialists, entrepreneurs and students.
Techno-economics and Life Cycle Assessment of Bioreactors: Post-Covid19 Waste Management Approach covers the emerging trends in bioreactor research, including techno-economics and life cycle assessment perspectives, both key considerations in making the anaerobic-digestion process technically feasible, economically viable and environmentally sustainable. The book is divided into three sections, with an introductory chapter on the impact of COVID-19 on existing practices of waste and resource management. Sections cover advances in bioreactor development for enhanced valorization of waste, the techno-economics of the different bioreactor systems, the life cycle assessment of bioreactors, their methodological challenges and future perspectives. Providing a holistic overview of bioreactors and taking into account recent trends in their design, the chapters also highlight the advances needed to manage COVID-19 waste in a sustainable manner. With contributions from leading experts in bioreactor and life cycle assessment, this book will be an invaluable reference source for academics working on anaerobic digesters and energy sustainability, as well as for research and development professionals in the renewable energy industry, and scientists and engineers working on clean and efficient energy generation from wastes.
Biofuels and Bioenergy: A Techno-Economic Approach provides an in-depth analysis of the economic aspects of biofuels production from renewable feedstock. Taking a biorefinery approach, the book analyzes a wide range of feedstocks, processes and products, including common biofuels such as bioethanol, biobutanol, biooil and biodiesel, feedstocks such as lignocellulosic biomass, non-edible feedstocks like vegetable oils, algae and microbial lipids, and solid and liquid wastes, performance assessments of biodiesel in diesel engine, and the latest developments in catalytic conversion and microbial electrosynthesis technologies. This book offers valuable insights into the commercial feasibility of biofuels products for researchers and students working in the area of bioenergy and renewable energy, but it is also ideal for practicing engineers in the biorefinery and biofuel industry who are looking to develop commercial products.
Microbes and Microbial Biotechnology for Green Remediation provides a comprehensive account of sustainable microbial treatment technologies. The research presented highlights the significantly important microbial species involved in remediation, the mechanisms of remediation by various microbes, and suggestions for future improvement of bioremediation technology. The introduction of contaminants, due to rapid urbanization and anthropogenic activities, into the environment causes unsteadiness and distress to the physicochemical systems, including living organisms. Hence, there is an immediate global demand for the diminution of such contaminants and xenobiotics which can otherwise adversely affect the living organisms. Over time, microbial remediation processes have been accelerated to produce better, eco-friendlier, and more biodegradable products for complete dissemination of these xenobiotic compounds. The advancements in microbiology and biotechnology lead to the launch of microbial biotechnology as a separate area of research and contributed dramatically to the development of the areas such as agriculture, environment, biopharmaceutics, and fermented foods. Microbes stand as an imperative, efficient, green, and economical alternative to conventional treatment technologies. The proposed book provides cost-effective and sustainable alternatives. This book serves as a reference for graduate and postgraduate students in environmental biotechnology and microbiology as well as researchers and scientists working in the laboratories and industries involved in research related to microbiology, environmental biotechnology, and allied research.
Nanomaterials for Sensing and Optoelectronic Applications explores recent trends in nanomaterials and devices for chemical and biosensing applications. The synthesis, properties and applications of metal oxide nanostructures, as well as two-dimensional layered materials are covered, along with the fabrication of optoelectronic devices, such as chemical sensors, biosensors, core-shell nanostructures-based surface-enhanced Raman spectroscopy (SERS) substrates, luminescent nanoparticles, memory devices, and thin film transistors. Aiming at researchers in these respective areas, the fundamental principles and mechanisms of the optoelectronic phenomena behind every application mentioned are covered and comprehensively explored. The book will be helpful in solving problems related to the synthesis and growth of various nanostructures, the application of these materials for various devices, and to understand how a specific synthesis route promotes a specific application.
Lithium-sulfur (Li-S) batteries provide an alternative to lithium-ion (Li-ion) batteries and are showing promise for providing much higher energy densities. Systems utilizing Li-S batteries are presently under development and early stages of commercialization. This technology is being developed in order to provide higher, safer levels of energy at significantly lower costs. Lithium-Sulfur Batteries: Advances in High-Energy Density Batteries addresses various aspects of the current research in the field of sulfur cathodes and lithium metal anode including abundance, system voltage, and capacity. In addition, it provides insights into the basic challenges faced by the system. The book includes novel strategies to prevent polysulfide dissolution in sulfur-based systems while also exploring new materials systems as anodes preventing dendrite formation in Li metal anodes.
CO2 Acidification in Aquatic Ecosystems: An Integrative Approach to Risk Assessment focuses on the characterization of different aspects of ecosystem science to describe the situation of CO2 acidification in aquatic ecosystems. This extensive coverage looks at the effects of CO2 acidification throughout all oceans and coastal areas. In addition, the book describes integrative approaches based on global case studies to determine the effects associated with this kind of acidification. It allows the reader to understand the different sources of CO2 in the aquatic ecosystems and the different approaches and lines of evidence available to characterize the impact of this acidification. This book provides researchers, professors and post graduate students in oceanography and aquatic ecology with a new and complete tool set to address and understand the potential impacts of CO2 acidification in aquatic ecosystems.