Skip to main content

Books in Physical sciences and engineering

    • Real-Variable Methods in Harmonic Analysis

      • 1st Edition
      • Alberto Torchinsky
      • Samuel Eilenberg + 1 more
      • English
      Real-Variable Methods in Harmonic Analysis deals with the unity of several areas in harmonic analysis, with emphasis on real-variable methods. Active areas of research in this field are discussed, from the Calderón-Zygmund theory of singular integral operators to the Muckenhoupt theory of Ap weights and the Burkholder-Gundy theory of good ? inequalities. The Calderón theory of commutators is also considered. Comprised of 17 chapters, this volume begins with an introduction to the pointwise convergence of Fourier series of functions, followed by an analysis of Cesàro summability. The discussion then turns to norm convergence; the basic working principles of harmonic analysis, centered around the Calderón-Zygmund decomposition of locally integrable functions; and fractional integration. Subsequent chapters deal with harmonic and subharmonic functions; oscillation of functions; the Muckenhoupt theory of Ap weights; and elliptic equations in divergence form. The book also explores the essentials of the Calderón-Zygmund theory of singular integral operators; the good ? inequalities of Burkholder-Gundy; the Fefferman-Stein theory of Hardy spaces of several real variables; Carleson measures; and Cauchy integrals on Lipschitz curves. The final chapter presents the solution to the Dirichlet and Neumann problems on C1-domains by means of the layer potential methods. This monograph is intended for graduate students with varied backgrounds and interests, ranging from operator theory to partial differential equations.
    • Localization of Nilpotent Groups and Spaces

      • 1st Edition
      • Peter Hilton + 2 more
      • Leopoldo Nachbin
      • English
      North-Holland Mathematics Studies, 15: Localization of Nilpotent Groups and Spaces focuses on the application of localization methods to nilpotent groups and spaces. The book first discusses the localization of nilpotent groups, including localization theory of nilpotent groups, properties of localization in N, further properties of localization, actions of a nilpotent group on an abelian group, and generalized Serre classes of groups. The book then examines homotopy types, as well as mixing of homotopy types, localizing H-spaces, main (pullback) theorem, quasifinite nilpotent spaces, localization of nilpotent complexes, and nilpotent spaces. The manuscript takes a look at the applications of localization theory, including genus and H-spaces, finite H-spaces, and non-cancellation phenomena. The publication is a vital source of data for mathematicians and researchers interested in the localization of nilpotent groups and spaces.
    • Nonlinear Partial Differential Equations in Engineering

      Mathematics in Science and Engineering: A Series of Monographs and Textbooks, Vol. 18
      • 1st Edition
      • W. F. Ames
      • Richard Bellman
      • English
      Nonlinear Partial Differential Equations in Engineering discusses methods of solution for nonlinear partial differential equations, particularly by using a unified treatment of analytic and numerical procedures. The book also explains analytic methods, approximation methods (such as asymptotic processes, perturbation procedures, weighted residual methods), and specific numerical procedures associated with these equations. The text presents exact methods of solution including the quasi-linear theory, the Poisson-Euler-Darbou... equation, a general solution for anisentropic flow, and other solutions obtained from ad hoc assumptions. The book explores analytic methods such as an ad hoc solution from magneto-gas dynamics. Noh and Protter have found the Lagrange formulation to be a convenient vehicle for obtaining "soft" solutions of the equations of gas dynamics. The book notes that developing solutions in two and three dimensions can be achieved by employing Lagrangian coordinates. The book explores approximate methods that use analytical procedures to obtain solutions in the form of functions approximating solutions of nonlinear problems. Approximate methods include integral equations, boundary theory, maximum operation, and equations of elliptic types. The book can serve and benefit mathematicians, students of, and professors of calculus, statistics, or advanced mathematics.
    • Concepts from Tensor Analysis and Differential Geometry

      • 1st Edition
      • Tracy Y. Thomas
      • Richard Bellman
      • English
      Concepts from Tensor Analysis and Differential Geometry discusses coordinate manifolds, scalars, vectors, and tensors. The book explains some interesting formal properties of a skew-symmetric tensor and the curl of a vector in a coordinate manifold of three dimensions. It also explains Riemann spaces, affinely connected spaces, normal coordinates, and the general theory of extension. The book explores differential invariants, transformation groups, Euclidean metric space, and the Frenet formulae. The text describes curves in space, surfaces in space, mixed surfaces, space tensors, including the formulae of Gaus and Weingarten. It presents the equations of two scalars K and Q which can be defined over a regular surface S in a three dimensional Riemannian space R. In the equation, the scalar K, which is an intrinsic differential invariant of the surface S, is known as the total or Gaussian curvature and the scalar U is the mean curvature of the surface. The book also tackles families of parallel surfaces, developable surfaces, asymptotic lines, and orthogonal ennuples. The text is intended for a one-semester course for graduate students of pure mathematics, of applied mathematics covering subjects such as the theory of relativity, fluid mechanics, elasticity, and plasticity theory.
    • Topological Vector Spaces, Distributions and Kernels

      Pure and Applied Mathematics, Vol. 25
      • 1st Edition
      • François Treves
      • Paul A. Smith + 1 more
      • English
      Topological Vector Spaces, Distributions and Kernels discusses partial differential equations involving spaces of functions and space distributions. The book reviews the definitions of a vector space, of a topological space, and of the completion of a topological vector space. The text gives examples of Frechet spaces, Normable spaces, Banach spaces, or Hilbert spaces. The theory of Hilbert space is similar to finite dimensional Euclidean spaces in which they are complete and carry an inner product that can determine their properties. The text also explains the Hahn-Banach theorem, as well as the applications of the Banach-Steinhaus theorem and the Hilbert spaces. The book discusses topologies compatible with a duality, the theorem of Mackey, and reflexivity. The text describes nuclear spaces, the Kernels theorem and the nuclear operators in Hilbert spaces. Kernels and topological tensor products theory can be applied to linear partial differential equations where kernels, in this connection, as inverses (or as approximations of inverses), of differential operators. The book is suitable for vector mathematicians, for students in advanced mathematics and physics.
    • A First Course in Rational Continuum Mechanics

      General Concepts
      • 1st Edition
      • C. Truesdell
      • Samuel Eilenberg + 1 more
      • English
      A First Course in Rational Continuum Mechanics, Volume 1: General Concepts describes general concepts in rational continuum mechanics and covers topics ranging from bodies and forces to motions and energies, kinematics, and the stress tensor. Constitutive relations are also discussed, and some definitions and theorems of algebra, geometry, and calculus are included. Exercises and their solutions are given as well. Comprised of four chapters, this volume begins with an introduction to rational mechanics by focusing on the mathematical concepts of bodies, forces, motions, and energies. Systems that provide possible universes for mechanics are described. The next chapter explores kinematics, with emphasis on bodies, placements, and motions as well as other relevant concepts like local deformation and homogeneous transplacement. The book also considers the stress tensor and Cauchy's fundamental theorem before concluding with a discussion on constitutive relations. This monograph is designed for students taking a course in mathematics or physics.
    • Scattering Theory

      Pure and Applied Mathematics, Vol. 26
      • 1st Edition
      • Peter D. Lax + 1 more
      • Paul A. Smith + 1 more
      • English
      Scattering Theory describes classical scattering theory in contrast to quantum mechanical scattering theory. The book discusses the formulation of the scattering theory in terms of the representation theory. The text also explains the relation between the behavior of the solution of the perturbed problem at small distances for large positive times and the analytic continuation of the scattering matrix. To prove the representation theorem, the text cites the methods used by Masani and Robertson in their work dealing with stationary stochastic processes. The book also applies the translation representation theory to a wave equation to obtain a comparison of the asymptotic properties of the free space solution with those of the solution in an exterior domain. The text discusses the solution of the wave equation in an exterior domain by fitting this problem into the abstract framework to get a verification of the hypotheses in some other theorems. The general theory of scattering can be applied to symmetric hyperbolic systems in which all sound speeds are different from zero, as well as to the acoustic equation which has a potential that can cause an energy form to become indefinite. The book is suitable for proponents of analytical mathematics, particle physics, and quantum physics.
    • The Optimal Design of Chemical Reactors

      A Study in Dynamic Programming
      • 1st Edition
      • Rutherford Aris
      • Richard Bellman
      • English
      Mathematics in Science and Engineering, Volume 3: The Optimal Design of Chemical Reactors: A Study in Dynamic Programming covers some of the significant problems of chemical reactor engineering from a unified point of view. This book discusses the principle of optimality in its general baring on chemical processes. Organized into nine chapters, this volume begins with an overview of the whole range of optimal problems in chemical reactor design. This text then provides the fundamental equations for reactions and reactors. Other chapters consider the objective function needed to define a realistic optimal problem and explain separately the main types of chemical reactors and their associated problems. This book discusses as well the three problems with a stochastic element. The final chapter deals with the optimal operation of existing reactors that may be regarded as partial designs in which only some of the variables can be optimally chosen. This book is a valuable resource for chemical engineers.
    • Mathematical Theory of Sedimentation Analysis

      • 1st Edition
      • Hiroshi Fujita
      • Eric Hutchinson + 1 more
      • English
      Mathematical Theory of Sedimentation Analysis deals with ultracentrifugal analysis. The book reviews flow equations for the ultracentrifuge, for two component systems, for multicomponent systems, and in chemically reacting systems. It explains the Svedberg equation and its extensions, and also the tests of the Onsager reciprocal relation. By employing a system consisting of two strong electrolytes and a solvent, the book illustrates that the sedimentation processes can be treated in terms of thermodynamics of irreversible processes. It also explains sedimentation-diffus... equilibrium and an approach to sedimentation equilibrium. It reviews the prediction of the time required to reach equilibrium, the estimates being made by Weaver (1926), and by Mason and Weaver (1924). The book employs sedimentation in a sector-shaped cell in a centrifugal field, of which the solutions of Mason and Weaver closely approximate the actual concentration distribution in the ultra-centrifuge cell. Other accurate solutions are by Fujita, Nazarian (1958), Yphantis, and Waugh. The book will prove valuable for mathematicians, physical chemists, biophysical chemists students, or professor of advanced mathematics.
    • Comparison and Oscillation Theory of Linear Differential Equations

      • 1st Edition
      • C. A. Swanson
      • Richard Bellman
      • English
      Mathematics in Science and Engineering, Volume 48: Comparison and Oscillation Theory of Linear Differential Equations deals primarily with the zeros of solutions of linear differential equations. This volume contains five chapters. Chapter 1 focuses on comparison theorems for second order equations, while Chapter 2 treats oscillation and nonoscillation theorems for second order equations. Separation, comparison, and oscillation theorems for fourth order equations are covered in Chapter 3. In Chapter 4, ordinary equations and systems of differential equations are reviewed. The last chapter discusses the result of the first analog of a Sturm-type comparison theorem for an elliptic partial differential equation. This publication is intended for college seniors or beginning graduate students who are well-acquainted with advanced calculus, complex analysis, linear algebra, and linear differential equations.