Statistical Mechanics, Fourth Edition, explores the physical properties of matter based on the dynamic behavior of its microscopic constituents. This valuable textbook introduces the reader to the historical context of the subject before delving deeper into chapters about thermodynamics, ensemble theory, simple gases theory, Ideal Bose and Fermi systems, statistical mechanics of interacting systems, phase transitions, and computer simulations. In the latest revision, the book's authors have updated the content throughout, including new coverage on biophysical applications, updated exercises, and computer simulations. This updated edition will be an indispensable to students and researchers of statistical mechanics, thermodynamics, and physics.
Introduction to Quantum Mechanics, 2nd Edition provides an accessible, fully updated introduction to the principles of quantum mechanics. It outlines the fundamental concepts of quantum theory, discusses how these arose from classic experiments in chemistry and physics, and presents the quantum-mechanical foundations of current scientific developments.Beginning with a solid introduction to the key principles underpinning quantum mechanics in Part 1, the book goes on to expand upon these in Part 2, where fundamental concepts such as molecular structure and chemical bonding are discussed. Finally, Part 3 discusses applications of this quantum theory across some newly developing applications, including chapters on Density Functional Theory, Statistical Thermodynamics and Quantum Computing.Drawing on the extensive experience of its expert author, Introduction to Quantum Mechanics, 2nd Edition is a lucid introduction to the principles of quantum mechanics for anyone new to the field, and a useful refresher on fundamental knowledge and latest developments for those varying degrees of background.
Modern Cosmology, Second Edition, provides a detailed introduction to the field of cosmology. Beginning with the smooth, homogeneous universe described by a Friedmann-Lemaître-Robertson-Walker metric, this trusted resource includes careful treatments of dark energy, big bang nucleosynthesis, recombination, and dark matter. The reader is then introduced to perturbations about an FLRW universe: their evolution with the Einstein-Boltzmann equations, their primordial generation by inflation, and their observational consequences: the acoustic peaks in the CMB; the E/B decomposition in polarization; gravitational lensing of the CMB and large-scale structure; and the BAO standard ruler and redshift-space distortions in galaxy clustering. The Second Edition now also covers nonlinear structure formation including perturbation theory and simulations. The book concludes with a substantially updated chapter on data analysis. Modern Cosmology, Second Edition, shows how modern observations are rapidly revolutionizing our picture of the universe, and supplies readers with all the tools needed to work in cosmology.
A Primer to the Theory of Critical Phenomena provides scientists in academia and industry, as well as graduate students in physics, chemistry, and geochemistry with the scientific fundamentals of critical phenomena and phase transitions. The book helps readers broaden their understanding of a field that has developed tremendously over the last forty years. The book also makes a great resource for graduate level instructors at universities.
Fundamentals of Quantum Mechanics, Third Edition is a clear and detailed introduction to quantum mechanics and its applications in chemistry and physics. All required math is clearly explained, including intermediate steps in derivations, and concise review of the math is included in the text at appropriate points. Most of the elementary quantum mechanical models—including particles in boxes, rigid rotor, harmonic oscillator, barrier penetration, hydrogen atom—are clearly and completely presented. Applications of these models to selected “real world” topics are also included.This new edition includes many new topics such as band theory and heat capacity of solids, spectroscopy of molecules and complexes (including applications to ligand field theory), and small molecules of astrophysical interest.
Advances in Quantum Chemistry: Lowdin Volume presents a series of articles exploring aspects of the application of quantum mechanics to atoms, molecules, and solids.
Advances in Applied Mechanics draws together recent, significant advances in various topics in applied mechanics. Published since 1948, the book aims to provide authoritative review articles on topics in the mechanical sciences. While the book is ideal for scientists and engineers working in various branches of mechanics, it is also beneficial to professionals who use the results of investigations in mechanics in various applications, such as aerospace, chemical, civil, environmental, mechanical, and nuclear engineering.
Unified Non-Local Relativistic Theory of Transport Processes highlights the most significant features of non-local relativistic theory, which is a highly effective tool for solving many physical problems in areas where the classical local theory runs into difficulties. The book provides the fundamental science behind new non-local physics – generalized for relativistic cases and applied in a range of scales – from transport phenomena in massless physical systems to unified theory of dissipative structures. The book complements the author’s previous monograph on Unified Non-Local Theory of Transport Processes (Elsevier, 2015), which is mainly devoted to non-relativistic non-local physics. Nevertheless, the theory as handled in this new work is outlined independently so the book can be studied on its own.
Advances in Classical Trajectory Methods, Volume 2: Dynamics of Ion-Molecule Complexes is a seven-chapter text that covers the considerable advances in the experimental and theoretical aspects of ion-molecular complexes, with particular emphasis on the dynamics and kinetics of their formation and ensuing unimolecular dissociation. This text also considers the development and testing of theoretical models for these formation and decomposition processes. The opening chapters discuss photoelectron photoion coincidence, ion cyclotron resonance, and crossed molecular beam studies of metastable ion-molecule complexes formed in ion-molecule collisions. These experimental studies involve comparisons with the predictions of statistical models, such as the Rice-Ramsperger-Kassel-Marcus and phase space theories, and comparisons with the reaction dynamics predicted by classical trajectory calculations. The succeeding chapter describes the double-well model for ion-molecular reactions taking place on a potential energy surface with a central barrier that separates two potential energy minima. These topics are followed by reviews of the quantum chemical calculation and reaction path Hamiltonian analysis of SN2 reactions, the transition state theory for ion-dipole and ion-quadrupole capture, and the capture and dynamical models for ion-molecule association to form a complex. The remaining chapters consider the temperature dependence of ion-molecule reactions, which proceed on a surface with many potential energy minima, specifically the ability to establish asymptotic limits for the reaction efficiency dependent upon the number of potential minima and the above relative probabilities. This book is of great value to experimental and theoretical chemists and physicists.
Recent Advances in Field Theory presents the proceedings of the Fourth Annecy Meeting on Theoretical Physics, held in Annecy-le-Vieux, France, on March 5–9, 1990. This book presents several relevant developments on the subject, including quantum algebra, two-dimensional quantum gravity, and topological quantum theories. Organized into 29 chapters, this book begins with an overview of the Hamiltonian quantization of the topological Chern–Simons theory. This text then examines the conformal affine Liouville model. Other chapters consider the global analyticity properties of functions correlated with causal kernels on de Sitter space. This book discusses as well the three particle models in terms of noncommutative gauge theory, namely, the Peccei-Quinn model, the Glashow–Weinberg–Salam model, and the standard model. The final chapter deals with the development on the construction of lattice integrable models corresponding to the SU (N) coset conformal field theories. This book is a valuable resource for physicists and scientists.