Low-Dimensional Materials, Systems and Applications, Volume 1: Principles, Methods, and Approaches in Electronics and Photonics showcases the complexities and uniqueness of low-dimensional materials and highlights the most recent discoveries in the fields of electronics and photonics. Low-dimensional nanoscale materials are challenging as they exhibit properties distinctly different from their bulk counterparts. There is an exponential increase of reactivity at the molecular level due to high surface-to-volume ratios in these materials, and not only are their electronic, optical, and chemical properties different, so too are their mechanical characteristics. This book highlights the state-of-the-art theoretical and experimental descriptions of the complexities, unique properties, and latest applications of low-dimensional materials with a particular focus on the fields of electronics and photonics.The book is primarily for researchers working on the simulation, fabrication, analysis, and uses of low-dimensional nanoscale materials, including materials scientists, electrical engineers, condensed matter physicists, and chemists.
Spinel Nanoferrites: Physicochemical and Biological Applications follows a comprehensive and multidisciplinary approach to spinel nanoferrites and their cutting-edge applications across energy, environment, and biomedicine, offering a roadmap to the development of future nano system-based tools. Sections cover structure, properties, classification, characterization techniques, and processing methods. Subsequent chapters guide the reader through various key energy and environmental applications of spinel nanoferrites, including electronics, devices, sensors, wastewater treatment, and catalysts. Magnetic and tailorable properties of nanoferrites are also examined, as is the role of spinel nanoferrites in novel therapeutic applications. Finally, current outlook and future opportunities for these novel nanostructures are considered. This is a valuable resource for all those with an interest in nanoferrites and novel nanomaterials, including researchers and advanced students across nanotechnology, biomedicine, pharmaceutical science, chemistry, materials science, and environmental science, and industrial scientists, engineers, and R&D professionals.
Nanostructured Carbon Materials from Plant Extracts: Synthesis, Characterization, and Applications guides the reader through the preparation and utilization of carbon nanomaterials based on various biomass sources, including fruits, vegetables, leaves, pulp and other plant extracts. The book covers the fundamentals of nanostructured carbon materials and synthesis methods from a range of plant sources. Other chapters focus on characterization, analysis, simulation and modeling in order to prepare plant extract based carbon nanomaterials with the required properties. Final sections highlight key application areas, presenting methods and approaches to prepare these materials for specific uses. This book will be of interest to researchers and advanced students across nanomaterials, polymer science, composite science, sustainable materials, chemistry, chemical engineering, and materials science, as well as industrial scientists, engineers, and R&D professionals with an interest in sustainable carbon nanomaterials.
Sustainable Nanomaterials provides core and advanced information about various sustainable nanomaterials and their synthetic approaches to natural and renewable resources. It summarizes various regulatory initiatives for ensuring sustainability goals and legal aspects of sustainable nanomaterials.This book also addresses potential nanomaterial risks and concludes that green nanotechnology is a concept that needs to be embedded and promoted in regulatory and voluntary initiatives to ensure nanotechnology’s sustainable development.This is a useful resource for advanced students, as well as environmental engineers, researchers, and the environmental industry.
One- and Two- Dimensional Nanomaterials: Bioengineering Applications covers in-depth information on the properties, structures, and preparation methods of one- and two- dimensional nanomaterials, providing readers with tools that can be immediately implemented and adapted to fit a diverse range of applications.The first part of the book covers the fundamentals of these materials, including properties and synthesis techniques. The second part of the book focuses on the use of several conventional and emerging nanomaterials in the areas of pollution management, remediation practices, and other possible applications in biosensing, biomedicine, and antimicrobial activity.This book will be a helpful resource to nano-scientists, biotechnologists, and bioengineers engaged in studying the emerging trends and different fabrication techniques of nanostructures and their applications and possible toxicity.
Sustainable Design of Sportswear and Activewear addresses all aspects of the production and manufacture of sportswear and activewear that impact on the environment, from across the supply chain.The demand for sportswear and activewear is increasing rapidly with many brands focusing on sustainable manufacturing, distribution, usage, and disposal. This book covers all processes from the selection of sustainable raw materials till the end of life. Particular attention is paid to various sustainable design methods that have been used in industry, methods for circular economy, and specialized methods for life cycle assessment as well.
Emerging Paradigms in Delivery Systems for Antitubercular Therapy provides an up-to-date and thorough overview of the state-of-the-art of concepts, design, and recent advances in nanomedicines and nanobiotechnology-based strategies for the treatment of tuberculosis. The book enables researchers to prepare a variety of nanotechnology-based strategies, investigate their properties, and discover their uses and applications in antitubercular therapy, focusing on advanced nanomaterials that are utilized for encapsulation of nucleic acid, mRNA, DNA, and tuberculosis vaccination.This book covers all major topics that have shaped the development of nanomedicine and propelled it to its current place at the forefront of Nanotechnology based treatment innovation. It will be a welcomed resource for researchers and readers with more and more challenging therapy and biologicals with their possible modifications to be used for the effective therapy of tuberculosis.
Functionalized Magnetic Nanohybrids: Synthetic Approaches, Biomedical and Environmental Applications provides a comprehensive overview of the basic principles, fabrication, self-assembling strategies, and potential applications of magnetic nanohybrids in the fields of biomedicine, sensors, and environmental remediation. Sections cover an introduction to the synthesis methods, functionalization, and characterization of magnetic nanohybrids, focus on the potential applications of these nanostructured materials in the biomedical field and for the removal of environmental pollutants, and cover challenges associated with fabrication techniques, and in the application of magnetic nanohybrids.
Nanophotonics with Diamond and Silicon Carbide for Quantum Technologies provides an in-depth overview of key developments in diamond and silicon carbide photonics to enable spin-photon interfaces, quantum computing, quantum imaging, and quantum sensing. Written by world experts, chapters discuss nanophotonics effects (atomic size point center properties in the materials), fabrication of photonic components and integrated photonics circuits, photonics and nanophotonics enabling quantum sensing, and quantum information and networks via spin-photon interface. This book is a valuable resource to researchers and professionals interested on the fundamentals, trends, and diamond and silicon carbide applications in the quantum technology industry.
Nanotechnology-Based Sensing Platforms for Illicit Drugs reviews different types of sensors that detect illicit drugs, with a special focus on the advantages provided by incorporating nanotechnology in their design. The book starts with the fundamentals, classification, progress, the current state of research on nanotechnology-based sensors, and an overview of materials commonly used. Subsequent chapters focus on the chemical interactive behaviors of drugs and their detection methods. It includes a thorough discussion on the design, fabrication, and characterization of sensors for illicit drug detection. Final sections provide an overall outlook on recent technological advances in drug detection devices and future research.This book is a valuable resource for researchers, scientists, and professionals interested in biosensors, nanotechnology, and their applications in illicit drug detection.