Nanophotonics with Diamond and Silicon Carbide for Quantum Technologies provides an in-depth overview of key developments in diamond and silicon carbide photonics to enable spin-photon interfaces, quantum computing, quantum imaging, and quantum sensing. Written by world experts, chapters discuss nanophotonics effects (atomic size point center properties in the materials), fabrication of photonic components and integrated photonics circuits, photonics and nanophotonics enabling quantum sensing, and quantum information and networks via spin-photon interface. This book is a valuable resource to researchers and professionals interested on the fundamentals, trends, and diamond and silicon carbide applications in the quantum technology industry.
Functionalized Magnetic Nanohybrids: Synthetic Approaches, Biomedical and Environmental Applications provides a comprehensive overview of the basic principles, fabrication, self-assembling strategies, and potential applications of magnetic nanohybrids in the fields of biomedicine, sensors, and environmental remediation. Sections cover an introduction to the synthesis methods, functionalization, and characterization of magnetic nanohybrids, focus on the potential applications of these nanostructured materials in the biomedical field and for the removal of environmental pollutants, and cover challenges associated with fabrication techniques, and in the application of magnetic nanohybrids.
Nanotechnology-Based Sensing Platforms for Illicit Drugs reviews different types of sensors that detect illicit drugs, with a special focus on the advantages provided by incorporating nanotechnology in their design. The book starts with the fundamentals, classification, progress, the current state of research on nanotechnology-based sensors, and an overview of materials commonly used. Subsequent chapters focus on the chemical interactive behaviors of drugs and their detection methods. It includes a thorough discussion on the design, fabrication, and characterization of sensors for illicit drug detection. Final sections provide an overall outlook on recent technological advances in drug detection devices and future research.This book is a valuable resource for researchers, scientists, and professionals interested in biosensors, nanotechnology, and their applications in illicit drug detection.
Emerging Paradigms in Delivery Systems for Antitubercular Therapy provides an up-to-date and thorough overview of the state-of-the-art of concepts, design, and recent advances in nanomedicines and nanobiotechnology-based strategies for the treatment of tuberculosis. The book enables researchers to prepare a variety of nanotechnology-based strategies, investigate their properties, and discover their uses and applications in antitubercular therapy, focusing on advanced nanomaterials that are utilized for encapsulation of nucleic acid, mRNA, DNA, and tuberculosis vaccination.This book covers all major topics that have shaped the development of nanomedicine and propelled it to its current place at the forefront of Nanotechnology based treatment innovation. It will be a welcomed resource for researchers and readers with more and more challenging therapy and biologicals with their possible modifications to be used for the effective therapy of tuberculosis.
Functionalized Nanoclays: Synthesis and Design for Industrial Applications presents a thorough and in-depth overview of functionalized nanoclays, from an introductory presentation of different nanoclays and their characterization, to their properties, synthesis, fabrication methods, and applications in various industries. The book begins with an introduction to functionalized nanoclays and their composites that is followed by sections dedicated to theoretical aspects and material synthesis. Subsequent chapters cover a broad range of industrial applications, including pollution remediation, sensing, drug delivery, food packaging, and much more.Following sections discuss recent progress in commercialization and standardization for functionalized nanoclays at both experimental and theoretical model scales. The book's final chapter presents research advances and future perspective for functionalized nanoclays as a replacement for traditional materials in diverse applications.
Smart and Intelligent Nanostructured Materials for Next-Generation Biosensors provides an up-to-date review of biosensor development and applications, with a focus on incorporating smart and intelligent nanomaterials for improved outcomes. The book covers a range of smart and intelligent nanomaterials for use in biosensors, including two popular classes: MXenes and carbon-based nanomaterials. Later chapters explore a variety of biosensor applications, such as in biomedicine, agriculture, and environment. This book is a useful reference for materials scientists, biomedical engineers, analytical and biochemists with an interest in smart/intelligent nanomaterials for biosensors.
Antimicrobial Materials and Coatings covers the properties, fabrication technologies, and applications of antimicrobial coatings and materials, with a focus on innovative antimicrobial nanomaterials. Due to the globally concerning issue of antimicrobial resistance and the evidence that nanomaterials are believed to have no or low potential for resistance development, considerable efforts have been directed to synthesizing and developing antibacterial coatings and nanomaterials for a range of applications. This book guides the reader through the key properties, fabrication technologies and various applications of antimicrobial coatings and materials, including applications in food packaging, biomedicine and public health, water treatment and decontamination.
Nanomechanics for Coatings and Engineering Surfaces: Test Methods, Development Strategies, Modeling Approaches, and Applications provides readers with an array of best practices for nanoindentation measurements as well as related small-scale test methods and how to translate test results into the development of improved coatings. A core theme of the book is explaining to readers exactly how, when, and why the nanomechanical properties of engineered surfaces relate to their wear resistance.The book starts with chapters that introduce the development and importance of nanomechanical testing and linkages between wear resistance and the mechanical properties of coatings before moving into discussions of various experimental methods and techniques, such as nanoindentation, continuous stiffness measurements, nano-scratch methods, high-temperature testing, nano-impact testing, and more. Other sections discuss modeling approaches such as finite element analysis, atomistic and molecular dynamics, and analytical methods. Design strategies and industrial applications are covered next, with a final section looking at trends and future directions.
Metal Sulfide Nanomaterials for Environmental Applications presents the fundamentals necessary to understand the latest developments and possibilities of applied use, specifically for chemical detection/sensing and monitoring in air, soil, and water matrices as well as for chemical reaction engineering purposes (conversion, photocatalysis, adsorption) to facilitate removal of pollutants. Organic contaminants, volatile organic compounds, and heavy metals pose long-term threats to natural ecosystems and human health. Particularly in the last decade, metal sulfide nanomaterials have piqued researchers’ interest due to their outstanding physicochemical characteristics that make them amenable to modulation, as well as their qualitative and quantitative structure–activity relationship.
Nanostructured Lithium-ion Battery Materials: Synthesis and Applications provides a detailed overview of nanostructured materials for application in Li-ion batteries, supporting improvements in materials selection and battery performance. The book begins by presenting the fundamentals of Lithium-ion batteries, including electrochemistry and reaction mechanism, advantages and disadvantages of Li-ion batteries, and characterization methods. Subsequent sections provide in-depth coverage of a range of nanostructured materials as applied to cathodes, electrolytes, separators, and anodes. Finally, other key aspects are discussed, including industrial scale-up, safety, life cycle analysis, recycling, and future research trends.This is a valuable resource for researchers, faculty, and advanced students across nanotechnology, materials science, battery technology, energy storage, chemistry, applied physics, chemical engineering, and electrical engineering. In an industrial setting, this book will be of interest to scientists, engineers, and R&D professionals working with advanced materials for Li-ion batteries and other energy storage applications.