Skip to main content

Books in Mathematics

The Mathematics collection presents a range of foundational and advanced research content across applied and discrete mathematics, including fields such as Computational Mathematics; Differential Equations; Linear Algebra; Modelling & Simulation; Numerical Analysis; Probability & Statistics.

  • A Collection of Problems on a Course of Mathematical Analysis

    • 1st Edition
    • G. N. Berman
    • I. N. Sneddon + 2 more
    • English
    Collection of Problems on a Course of Mathematical Analysis contains selected problems and exercises on the main branches of a Technical College course of mathematical analysis. This book covers the topics of functions, limits, derivatives, differential calculus, curves, definite integral, integral calculus, methods of evaluating definite integrals, and their applications. Other topics explored include numerical problems related to series and the functions of several variables in differential calculus, as well as their applications. The remaining chapters examine the principles of multiple, line, and surface integrals, the trigonometric series, and the elements of the theory of fields. This book is intended for students studying mathematical analysis within the framework of a technical college course.
  • Non-Linear Differential Equations

    • 1st Edition
    • Volume 67
    • G. Sansone + 1 more
    • I. N. Sneddon + 2 more
    • English
    Non-Linear Differential Equations covers the general theorems, principles, solutions, and applications of non-linear differential equations. This book is divided into nine chapters. The first chapters contain detailed analysis of the phase portrait of two-dimensional autonomous systems. The succeeding chapters deal with the qualitative methods for the discovery of periodic solutions in periodic systems. The remaining chapters describe a synthetical approach to the study of asymptotic properties, especially stability properties, of the solutions of general n-dimensional systems. This book will be of great value to mathematicians, researchers, and students.
  • The Theory of Lebesgue Measure and Integration

    • 1st Edition
    • Volume 15
    • S. Hartman + 1 more
    • I. N. Sneddon + 2 more
    • English
    The Theory of Lebesgue Measure and Integration deals with the theory of Lebesgue measure and integration and introduces the reader to the theory of real functions. The subject matter comprises concepts and theorems that are now considered classical, including the Yegorov, Vitali, and Fubini theorems. The Lebesgue measure of linear sets is discussed, along with measurable functions and the definite Lebesgue integral. Comprised of 13 chapters, this volume begins with an overview of basic concepts such as set theory, the denumerability and non-denumerability of sets, and open sets and closed sets on the real line. The discussion then turns to the theory of Lebesgue measure of linear sets based on the method of M. Riesz, together with the fundamental properties of measurable functions. The Lebesgue integral is considered for both bounded functions — upper and lower integrals — and unbounded functions. Later chapters cover such topics as the Yegorov, Vitali, and Fubini theorems; convergence in measure and equi-integrability; integration and differentiation; and absolutely continuous functions. Multiple integrals and the Stieltjes integral are also examined. This book will be of interest to mathematicians and students taking pure and applied mathematics.
  • Analytic Properties of Automorphic L-Functions

    • 1st Edition
    • Volume 6
    • Stephen Gelbart + 1 more
    • J. Coates + 1 more
    • English
    Analytic Properties of Automorphic L-Functions is a three-chapter text that covers considerable research works on the automorphic L-functions attached by Langlands to reductive algebraic groups. Chapter I focuses on the analysis of Jacquet-Langlands methods and the Einstein series and Langlands’ so-called “Euler products”. This chapter explains how local and global zeta-integrals are used to prove the analytic continuation and functional equations of the automorphic L-functions attached to GL(2). Chapter II deals with the developments and refinements of the zeta-inetgrals for GL(n). Chapter III describes the results for the L-functions L (s, ?, r), which are considered in the constant terms of Einstein series for some quasisplit reductive group. This book will be of value to undergraduate and graduate mathematics students.
  • Fundamental Concepts of Mathematics

    • 2nd Edition
    • R. L. Goodstein
    • I. N. Sneddon
    • English
    Fundamental Concepts of Mathematics, 2nd Edition provides an account of some basic concepts in modern mathematics. The book is primarily intended for mathematics teachers and lay people who wants to improve their skills in mathematics. Among the concepts and problems presented in the book include the determination of which integral polynomials have integral solutions; sentence logic and informal set theory; and why four colors is enough to color a map. Unlike in the first edition, the second edition provides detailed solutions to exercises contained in the text. Mathematics teachers and people who want to gain a thorough understanding of the fundamental concepts of mathematics will find this book a good reference.
  • Elements of Linear Space

    • 1st Edition
    • Volume 26
    • A. R. Amir-Moez + 1 more
    • I. N. Sneddon + 2 more
    • English
    Elements of Linear Space is a detailed treatment of the elements of linear spaces, including real spaces with no more than three dimensions and complex n-dimensional spaces. The geometry of conic sections and quadric surfaces is considered, along with algebraic structures, especially vector spaces and transformations. Problems drawn from various branches of geometry are given. Comprised of 12 chapters, this volume begins with an introduction to real Euclidean space, followed by a discussion on linear transformations and matrices. The addition and multiplication of transformations and matrices are given emphasis. Subsequent chapters focus on some properties of determinants and systems of linear equations; special transformations and their matrices; unitary spaces; and some algebraic structures. Quadratic forms and their applications to geometry are also examined, together with linear transformations in general vector spaces. The book concludes with an evaluation of singular values and estimates of proper values of matrices, paying particular attention to linear transformations always on a unitary space of dimension n over the complex field. This book will be of interest to both undergraduate and more advanced students of mathematics.
  • Automorphic Forms and Geometry of Arithmetic Varieties

    • 1st Edition
    • K. Hashimoto + 1 more
    • English
    Automorphic Forms and Geometry of Arithmetic Varieties deals with the dimension formulas of various automorphic forms and the geometry of arithmetic varieties. The relation between two fundamental methods of obtaining dimension formulas (for cusp forms), the Selberg trace formula and the index theorem (Riemann-Roch's theorem and the Lefschetz fixed point formula), is examined. Comprised of 18 sections, this volume begins by discussing zeta functions associated with cones and their special values, followed by an analysis of cusps on Hilbert modular varieties and values of L-functions. The reader is then introduced to the dimension formula of Siegel modular forms; the graded rings of modular forms in several variables; and Selberg-Ihara's zeta function for p-adic discrete groups. Subsequent chapters focus on zeta functions of finite graphs and representations of p-adic groups; invariants and Hodge cycles; T-complexes and Ogata's zeta zero values; and the structure of the icosahedral modular group. This book will be a useful resource for mathematicians and students of mathematics.
  • The Boundary Element Method for Plate Analysis

    • 1st Edition
    • John T. Katsikadelis
    • English
    Boundary Element Method for Plate Analysis offers one of the first systematic and detailed treatments of the application of BEM to plate analysis and design. Aiming to fill in the knowledge gaps left by contributed volumes on the topic and increase the accessibility of the extensive journal literature covering BEM applied to plates, author John T. Katsikadelis draws heavily on his pioneering work in the field to provide a complete introduction to theory and application. Beginning with a chapter of preliminary mathematical background to make the book a self-contained resource, Katsikadelis moves on to cover the application of BEM to basic thin plate problems and more advanced problems. Each chapter contains several examples described in detail and closes with problems to solve. Presenting the BEM as an efficient computational method for practical plate analysis and design, Boundary Element Method for Plate Analysis is a valuable reference for researchers, students and engineers working with BEM and plate challenges within mechanical, civil, aerospace and marine engineering.
  • Elements of Analytical Dynamics

    • 1st Edition
    • Rudolph Kurth
    • I. N. Sneddon + 1 more
    • English
    Elements of Analytical Dynamics deals with dynamics, which studies the relationship between motion of material bodies and the forces acting on them. This book is a compilation of lectures given by the author at the Georgia and Institute of Technology and formed a part of a course in Topological Dynamics. The book begins by discussing the notions of space and time and their basic properties. It then discusses the Hamilton-Jacobi theory and Hamilton's principle and first integrals. The text concludes with a discussion on Jacobi's geometric interpretation of conservative systems. This book will be of direct use to graduate students of Mathematics with minimal background in Theoretical Mechanics.
  • Stochastic Integration

    • 1st Edition
    • Michel Metivier + 1 more
    • Z. W. Birnbaum + 1 more
    • English
    Probability and Mathematical Statistics: A Series of Monographs and Textbooks: Stochastic Integration focuses on the processes, methodologies, and approaches involved in stochastic integration. The publication first takes a look at the Ito formula, stochastic integral equations, and martingales and semimartingales. Discussions focus on Meyer process and decomposition theorem, inequalities, examples of stochastic differential equations, general stochastic integral equations, and applications of the Ito formula. The text then elaborates on stochastic measures, including stochastic measures and related integration and the Riesz representation theorem. The manuscript tackles the special features of infinite dimensional stochastic integration, as well as the isometric integral of a Hubert-valued square integrable martingale, cylindrical processes, and stochastic integral with respect to 2-cylindrical martingales with finite quadratic variation. The book is a valuable reference for mathematicians and researchers interested in stochastic integration.