Skip to main content

Books in Mathematics

The Mathematics collection presents a range of foundational and advanced research content across applied and discrete mathematics, including fields such as Computational Mathematics; Differential Equations; Linear Algebra; Modelling & Simulation; Numerical Analysis; Probability & Statistics.

  • Logic, Automata, and Algorithms

    • 1st Edition
    • Volume 79
    • English
    In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; andmethods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.As a result, the book represents a blend of new methods in general computational analysis,and specific, but also generic, techniques for study of systems theory ant its particularbranches, such as optimal filtering and information compression.
  • Adaptation and Learning in Automatic Systems

    • 1st Edition
    • Volume 73
    • Tsypkin
    • English
  • General Dynamical Processes: A Mathematical Introduction

    • 1st Edition
    • Volume 78
    • English
    In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; andmethods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.As a result, the book represents a blend of new methods in general computational analysis,and specific, but also generic, techniques for study of systems theory ant its particularbranches, such as optimal filtering and information compression.
  • Integer Programming

    • 1st Edition
    • Volume 76
    • English
    In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; andmethods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.As a result, the book represents a blend of new methods in general computational analysis,and specific, but also generic, techniques for study of systems theory ant its particularbranches, such as optimal filtering and information compression.
  • Numerical Solution of Ordinary Differential Equations

    • 1st Edition
    • Volume 74
    • English
    In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; andmethods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.As a result, the book represents a blend of new methods in general computational analysis,and specific, but also generic, techniques for study of systems theory ant its particularbranches, such as optimal filtering and information compression.
  • Diakoptics and Networks

    • 1st Edition
    • Volume 69
    • Happ
    • English
  • The Padé Approximant in Theoretical Physics

    • 1st Edition
    • Volume 71
    • English
    In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; andmethods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.As a result, the book represents a blend of new methods in general computational analysis,and specific, but also generic, techniques for study of systems theory ant its particularbranches, such as optimal filtering and information compression.
  • Introduction to Stochastic Control Theory

    • 1st Edition
    • Volume 70
    • English
    In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; andmethods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.As a result, the book represents a blend of new methods in general computational analysis,and specific, but also generic, techniques for study of systems theory ant its particularbranches, such as optimal filtering and information compression.
  • Theory of H[superscript p] spaces

    • 1st Edition
    • Volume 38
    • English
    The theory of HP spaces has its origins in discoveries made forty or fifty years ago by such mathematicians as G. H. Hardy, J. E. Littlewood, I. I. Privalov, F. and M. Riesz, V. Smirnov, and G. Szego. Most of this early work is concerned with the properties of individual functions of class HP, and is classical in spirit. In recent years, the development of functional analysis has stimulated new interest in the HP classes as linear spaces. This point of viewhas suggested a variety of natural problems and has provided new methods of attack, leading to important advances in the theory. This book is an account of both aspects of the subject, the classical and the modern. It is intended to provide a convenient source for the older parts of the theory (the work of Hardy and Littlewood, for example), as well as to give a self-contained exposition of more recent developments such as Beurling’s theorem on invariant subspaces, the Macintyre-Rogosinski... theory of extremal problems, interpolation theory, the dual space structure of HP with p < 1, HP spaces over general domains, and Carleson’s proof of the corona theorem. Some of the older results are proved by modern methods. In fact, the dominant theme of the book is the interplay of “ hard” and “ soft” analysis, the blending of classical and modern techniques and viewpoints.
  • Dimension Theory

    • 1st Edition
    • Volume 37
    • English