Skip to main content

Books in Mathematics

The Mathematics collection presents a range of foundational and advanced research content across applied and discrete mathematics, including fields such as Computational Mathematics; Differential Equations; Linear Algebra; Modelling & Simulation; Numerical Analysis; Probability & Statistics.

  • Handbook of Algebraic Topology

    • 1st Edition
    • I.M. James
    • English
    Algebraic topology (also known as homotopy theory) is a flourishing branch of modern mathematics. It is very much an international subject and this is reflected in the background of the 36 leading experts who have contributed to the Handbook. Written for the reader who already has a grounding in the subject, the volume consists of 27 expository surveys covering the most active areas of research. They provide the researcher with an up-to-date overview of this exciting branch of mathematics.
  • Linear Algebra

    An Introduction
    • 1st Edition
    • Richard Bronson
    • English
    In this appealing and well-written text, Richard Bronson gives readers a substructure for a firm understanding of the abstract concepts of linear algebra and its applications. The author starts with the concrete andcomputational (a 3 x 5 matrix describing a stores inventory) and leads the reader to a choice of major applications (Markov chains, least squares approximation, and solution of differential equations using Jordan normal form). The first three chapters address the basics: matrices, vector spaces, and linear transformations. The next three cover eigenvalues, Euclidean inner products, and Jordan canonical forms, offering possibilities that can be tailored to the instructors taste and to the length of the course. Bronsons approach to computation is modern and algorithmic, and his theory is clean and straightforward. Throughout, the views of the theory presented are broad and balanced. Key material is highlighted in the text and summarized at end of each chapter. The book also includes ample exercises with answers and hints. With its inclusion of all the needed pedagogical features, this text will be a pleasure for teachers and students alike.
  • The Spectral Analysis of Time Series

    • 1st Edition
    • Lambert H. Koopmans
    • English
    To tailor time series models to a particular physical problem and to follow the working of various techniques for processing and analyzing data, one must understand the basic theory of spectral (frequency domain) analysis of time series. This classic book provides an introduction to the techniques and theories of spectral analysis of time series. In a discursive style, and with minimal dependence on mathematics, the book presents the geometric structure of spectral analysis. This approach makes possible useful, intuitive interpretations of important time series parameters and provides a unified framework for an otherwise scattered collection of seemingly isolated results.The books strength lies in its applicability to the needs of readers from many disciplines with varying backgrounds in mathematics. It provides a solid foundation in spectral analysis for fields that include statistics, signal process engineering, economics, geophysics, physics, and geology. Appendices provide details and proofs for those who are advanced in math. Theories are followed by examples and applications over a wide range of topics such as meteorology, seismology, and telecommunications.T... covered include Hilbert spaces; univariate models for spectral analysis; multivariate spectral models; sampling, aliasing, and discrete-time models; real-time filtering; digital filters; linear filters; distribution theory; sampling properties ofspectral estimates; and linear prediction.
  • Probability - Modular Mathematics Series

    • 1st Edition
    • John McColl
    • English
    Probability is relevant to so many different subject areas that its importance as a mathematical technique cannot be underestimated. This book provides a comprehensive, user-friendly introduction to the subject. The step-by-step approach taken by the author allows students to develop knowledge at their own pace and, by working through the numerous exercises, they are ensured a full understanding of the material before moving on to more advanced sections. Traditional examples of probablistic theory, such as coins and dice, are included but the author has also used many exercises based on real-life problems. The result is an introduction to probability that avoids the overly confusing, theoretical approach often adopted in this area, and provides a simple and concise text that will be invaluable to all studying first and second year courses on the subject.
  • Principles of Control Engineering

    • 1st Edition
    • Fred White
    • English
    This book provides a basic grounding in the theory of control engineering, without assuming an unrealistic level of mathematical understanding. When control engineering is first approached, no matter what the ultimate application, a certain amount of background theory must be grasped to make sense of the topic. To meet this general need the author presents the basic principles in a clear and accessible way, along with plenty of examples and assessment questions.
  • The Theory of Gambling and Statistical Logic, Revised Edition

    • 1st Edition
    • Richard A. Epstein
    • English
    [Man] invented a concept that has since been variously viewed as a vice, a crime, a business, a pleasure, a type of magic, a disease, a folly, a weakness, a form of sexual substitution, an expression of the human instinct. He invented gambling.Richard Epstein's classic book on gambling and its mathematical analysis covers the full range of games from penny matching, to blackjack and other casino games, to the stock market (including Black-Scholes analysis). He even considers what light statistical inference can shed on the study of paranormal phenomena. Epstein is witty and insightful, a pleasure to dip into and read and rewarding to study.
  • Harmonic Analysis and Special Functions on Symmetric Spaces

    • 1st Edition
    • Volume 16
    • Gerrit Heckman
    • English
    The two parts of this sharply focused book, Hypergeometric and Special Functions and Harmonic Analysis on Semisimple Symmetric Spaces, are derived from lecture notes for the European School of Group Theory, a forum providing high-level courses on recent developments in group theory. The authors provide students and researchers with a thorough and thoughtful overview, elaborating on the topic with clear statements of definitions and theorems and augmenting these withtime-saving examples. An extensive set of notes supplements the text.Heckman and Schlichtkrull extend the ideas of harmonic analysis on semisimple symmetric spaces to embrace the theory of hypergeometric and spherical functions and show that the K-variant Eisenstein integrals for G/H are hypergeometric functions under this theory. They lead readers from the fundamentals of semisimple symmetric spaces of G/H to the frontier, including generalization, to the Riemannian case. This volume will interest harmonic analysts, those working on or applying the theory of symmetric spaces; it will also appeal to those with an interest in special functions.
  • Logic, Methodology and Philosophy of Science IX

    • 1st Edition
    • Volume 134
    • D. Prawitz + 2 more
    • English
    This volume is the product of the Proceedings of the 9th International Congress of Logic, Methodology and Philosophy of Science and contains the text of most of the invited lectures. Divided into 15 sections, the book covers a wide range of different issues. The reader is given the opportunity to learn about the latest thinking in relevant areas other than those in which they themselves may normally specialise.
  • Linear Algebra

    • 1st Edition
    • Reg Allenby
    • English
    As the basis of equations (and therefore problem-solving), linear algebra is the most widely taught sub-division of pure mathematics. Dr Allenby has used his experience of teaching linear algebra to write a lively book on the subject that includes historical information about the founders of the subject as well as giving a basic introduction to the mathematics undergraduate. The whole text has been written in a connected way with ideas introduced as they occur naturally. As with the other books in the series, there are many worked examples.
  • Fractal Functions, Fractal Surfaces, and Wavelets

    • 1st Edition
    • Peter R. Massopust
    • English
    Fractal Functions, Fractal Surfaces, and Wavelets is the first systematic exposition of the theory of fractal surfaces, a natural outgrowth of fractal sets and fractal functions. It is also the first treatment to bring these general considerations to bear on the burgeoning field of wavelets. The text is based on Massopusts work on and contributions to the theory of fractal functions, and the author uses a number of tools--including analysis, topology, algebra, and probability theory--to introduce readers to this new subject. Though much of the material presented in this book is relatively current (developed in the past decade by the author and his colleagues) and fairly specialized, an informative background is provided for those