Back to School Savings: Save up to 30% on print books and eBooks. No promo code needed.
Back to School Savings: Save up to 30%
Projective Differential Geometry of Submanifolds
1st Edition - June 30, 1993
Authors: M.A. Akivis, V.V. Goldberg
Hardback ISBN:9780444897718
9 7 8 - 0 - 4 4 4 - 8 9 7 7 1 - 8
eBook ISBN:9780080887166
9 7 8 - 0 - 0 8 - 0 8 8 7 1 6 - 6
In this book, the general theory of submanifolds in a multidimensional projective space is constructed. The topics dealt with include osculating spaces and fundamental forms of… Read more
Purchase Options
Save 50% on book bundles
Immediately download your ebook while waiting for your print delivery. No promo code is needed.
In this book, the general theory of submanifolds in a multidimensional projective space is constructed. The topics dealt with include osculating spaces and fundamental forms of different orders, asymptotic and conjugate lines, submanifolds on the Grassmannians, different aspects of the normalization problems for submanifolds (with special emphasis given to a connection in the normal bundle) and the problem of algebraizability for different kinds of submanifolds, the geometry of hypersurfaces and hyperbands, etc. A series of special types of submanifolds with special projective structures are studied: submanifolds carrying a net of conjugate lines (in particular, conjugate systems), tangentially degenerate submanifolds, submanifolds with asymptotic and conjugate distributions etc. The method of moving frames and the apparatus of exterior differential forms are systematically used in the book and the results presented can be applied to the problems dealing with the linear subspaces or their generalizations.
Graduate students majoring in differential geometry will find this monograph of great interest, as will researchers in differential and algebraic geometry, complex analysis and theory of several complex variables.
Preface. Chapters: 1. Preliminaries. 2. The Foundations of Projective Differential Geometry of Submanifolds. 3. Submanifolds Carrying a Net of Conjugate Lines. 4. Tangentially Degenerate Submanifolds. 5. Submanifolds with Asymptotic and Conjugate Distributions. 6. Normalized Submanifolds in a Projective Space. 7. Projective Differential Geometry of Hypersurfaces. 8. Algebraization Problems in Projective Differential Geometry.
Bibliography. Symbols Frequently Used. Index.
No. of pages: 361
Language: English
Published: June 30, 1993
Imprint: North Holland
Hardback ISBN: 9780444897718
eBook ISBN: 9780080887166
MA
M.A. Akivis
Affiliations and expertise
Moscow Institute of Steel and Alloys, Department of Mathematics, Moscow, Russia
VG
V.V. Goldberg
Affiliations and expertise
New Jersey Institute of Technology, Department of Mathematics, Newark, NJ, USA