Skip to main content

Books in Mathematics

The Mathematics collection presents a range of foundational and advanced research content across applied and discrete mathematics, including fields such as Computational Mathematics; Differential Equations; Linear Algebra; Modelling & Simulation; Numerical Analysis; Probability & Statistics.

  • Operator Theory and Numerical Methods

    • 1st Edition
    • Volume 30
    • H. Fujita + 2 more
    • English
    In accordance with the developments in computation, theoretical studies on numerical schemes are now fruitful and highly needed. In 1991 an article on the finite element method applied to evolutionary problems was published. Following the method, basically this book studies various schemes from operator theoretical points of view. Many parts are devoted to the finite element method, but other schemes and problems (charge simulation method, domain decomposition method, nonlinear problems, and so forth) are also discussed, motivated by the observation that practically useful schemes have fine mathematical structures and the converses are also true.
  • Ordinary Differential Equations and Integral Equations

    • 1st Edition
    • Volume 6
    • C.T.H. Baker + 2 more
    • J.D. Pryce
    • English
    /homepage/sac/cam/na... Set now available at special set price !This volume contains contributions in the area of differential equations and integral equations. Many numerical methods have arisen in response to the need to solve "real-life" problems in applied mathematics, in particular problems that do not have a closed-form solution. Contributions on both initial-value problems and boundary-value problems in ordinary differential equations appear in this volume. Numerical methods for initial-value problems in ordinary differential equations fall naturally into two classes: those which use one starting value at each step (one-step methods) and those which are based on several values of the solution (multistep methods).John Butcher has supplied an expert's perspective of the development of numerical methods for ordinary differential equations in the 20th century. Rob Corless and Lawrence Shampine talk about established technology, namely software for initial-value problems using Runge-Kutta and Rosenbrock methods, with interpolants to fill in the solution between mesh-points, but the 'slant' is new - based on the question, "How should such software integrate into the current generation of Problem Solving Environments?"Natali... Borovykh and Marc Spijker study the problem of establishing upper bounds for the norm of the nth power of square matrices.The dynamical system viewpoint has been of great benefit to ODE theory and numerical methods. Related is the study of chaotic behaviour.Willy Govaerts discusses the numerical methods for the computation and continuation of equilibria and bifurcation points of equilibria of dynamical systems.Arieh Iserles and Antonella Zanna survey the construction of Runge-Kutta methods which preserve algebraic invariant functions.Valeria Antohe and Ian Gladwell present numerical experiments on solving a Hamiltonian system of Hénon and Heiles with a symplectic and a nonsymplectic method with a variety of precisions and initial conditions.Stiff differential equations first became recognized as special during the 1950s. In 1963 two seminal publications laid to the foundations for later development: Dahlquist's paper on A-stable multistep methods and Butcher's first paper on implicit Runge-Kutta methods.Ernst Hairer and Gerhard Wanner deliver a survey which retraces the discovery of the order stars as well as the principal achievements obtained by that theory.Guido Vanden Berghe, Hans De Meyer, Marnix Van Daele and Tanja Van Hecke construct exponentially fitted Runge-Kutta methods with s stages.Differential-... equations arise in control, in modelling of mechanical systems and in many other fields.Jeff Cash describes a fairly recent class of formulae for the numerical solution of initial-value problems for stiff and differential-algebra... systems.Shengtai Li and Linda Petzold describe methods and software for sensitivity analysis of solutions of DAE initial-value problems.Again in the area of differential-algebra... systems, Neil Biehn, John Betts, Stephen Campbell and William Huffman present current work on mesh adaptation for DAE two-point boundary-value problems.Contrasting approaches to the question of how good an approximation is as a solution of a given equation involve (i) attempting to estimate the actual error (i.e., the difference between the true and the approximate solutions) and (ii) attempting to estimate the defect - the amount by which the approximation fails to satisfy the given equation and any side-conditions.The paper by Wayne Enright on defect control relates to carefully analyzed techniques that have been proposed both for ordinary differential equations and for delay differential equations in which an attempt is made to control an estimate of the size of the defect.Many phenomena incorporate noise, and the numerical solution of stochastic differential equations has developed as a relatively new item of study in the area.Keven Burrage, Pamela Burrage and Taketomo Mitsui review the way numerical methods for solving stochastic differential equations (SDE's) are constructed.One of the more recent areas to attract scrutiny has been the area of differential equations with after-effect (retarded, delay, or neutral delay differential equations) and in this volume we include a number of papers on evolutionary problems in this area.The paper of Genna Bocharov and Fathalla Rihan conveys the importance in mathematical biology of models using retarded differential equations.The contribution by Christopher Baker is intended to convey much of the background necessary for the application of numerical methods and includes some original results on stability and on the solution of approximating equations.Alfredo Bellen, Nicola Guglielmi and Marino Zennaro contribute to the analysis of stability of numerical solutions of nonlinear neutral differential equations.Koen Engelborghs, Tatyana Luzyanina, Dirk Roose, Neville Ford and Volker Wulf consider the numerics of bifurcation in delay differential equations.Evelyn Buckwar contributes a paper indicating the construction and analysis of a numerical strategy for stochastic delay differential equations (SDDEs).This volume contains contributions on both Volterra and Fredholm-type integral equations.Christophe... Baker responded to a late challenge to craft a review of the theory of the basic numerics of Volterra integral and integro-differential equations.Simon Shaw and John Whiteman discuss Galerkin methods for a type of Volterra integral equation that arises in modelling viscoelasticity.A subclass of boundary-value problems for ordinary differential equation comprises eigenvalue problems such as Sturm-Liouville problems (SLP) and Schrödinger equations.Liviu Ixaru describes the advances made over the last three decades in the field of piecewise perturbation methods for the numerical solution of Sturm-Liouville problems in general and systems of Schrödinger equations in particular.Alan Andrew surveys the asymptotic correction method for regular Sturm-Liouville problems.Leon Greenberg and Marco Marletta survey methods for higher-order Sturm-Liouville problems.R. Moore in the 1960s first showed the feasibility of validated solutions of differential equations, that is, of computing guaranteed enclosures of solutions.Boundary integral equations. Numerical solution of integral equations associated with boundary-value problems has experienced continuing interest.Peter Junghanns and Bernd Silbermann present a selection of modern results concerning the numerical analysis of one-dimensional Cauchy singular integral equations, in particular the stability of operator sequences associated with different projection methods.Johannes Elschner and Ivan Graham summarize the most important results achieved in the last years about the numerical solution of one-dimensional integral equations of Mellin type of means of projection methods and, in particular, by collocation methods.A survey of results on quadrature methods for solving boundary integral equations is presented by Andreas Rathsfeld.Wolfgang Hackbusch and Boris Khoromski present a novel approach for a very efficient treatment of integral operators.Ernst Stephan examines multilevel methods for the h-, p- and hp- versions of the boundary element method, including pre-conditioning techniques.George Hsiao, Olaf Steinbach and Wolfgang Wendland analyze various boundary element methods employed in local discretization schemes.
  • Advanced Engineering Mathematics

    • 1st Edition
    • Alan Jeffrey
    • English
    Advanced Engineering Mathematics provides comprehensive and contemporary coverage of key mathematical ideas, techniques, and their widespread applications, for students majoring in engineering, computer science, mathematics and physics. Using a wide range of examples throughout the book, Jeffrey illustrates how to construct simple mathematical models, how to apply mathematical reasoning to select a particular solution from a range of possible alternatives, and how to determine which solution has physical significance. Jeffrey includes material that is not found in works of a similar nature, such as the use of the matrix exponential when solving systems of ordinary differential equations. The text provides many detailed, worked examples following the introduction of each new idea, and large problem sets provide both routine practice, and, in many cases, greater challenge and insight for students. Most chapters end with a set of computer projects that require the use of any CAS (such as Maple or Mathematica) that reinforce ideas and provide insight into more advanced problems.
  • Inherently Parallel Algorithms in Feasibility and Optimization and their Applications

    • 1st Edition
    • Volume 8
    • D. Butnariu + 2 more
    • English
    The Haifa 2000 Workshop on "Inherently Parallel Algorithms for Feasibility and Optimization and their Applications" brought together top scientists in this area. The objective of the Workshop was to discuss, analyze and compare the latest developments in this fast growing field of applied mathematics and to identify topics of research which are of special interest for industrial applications and for further theoretical study.Inherently parallel algorithms, that is, computational methods which are, by their mathematical nature, parallel, have been studied in various contexts for more than fifty years. However, it was only during the last decade that they have mostly proved their practical usefulness because new generations of computers made their implementation possible in order to solve complex feasibility and optimization problems involving huge amounts of data via parallel processing. These led to an accumulation of computational experience and theoretical information and opened new and challenging questions concerning the behavior of inherently parallel algorithms for feasibility and optimization, their convergence in new environments and in circumstances in which they were not considered before their stability and reliability. Several research groups all over the world focused on these questions and it was the general feeling among scientists involved in this effort that the time has come to survey the latest progress and convey a perspective for further development and concerted scientific investigations. Thus, the editors of this volume, with the support of the Israeli Academy for Sciences and Humanities, took the initiative of organizing a Workshop intended to bring together the leading scientists in the field. The current volume is the Proceedings of the Workshop representing the discussions, debates and communications that took place. Having all that information collected in a single book will provide mathematicians and engineers interested in the theoretical and practical aspects of the inherently parallel algorithms for feasibility and optimization with a tool for determining when, where and which algorithms in this class are fit for solving specific problems, how reliable they are, how they behave and how efficient they were in previous applications. Such a tool will allow software creators to choose ways of better implementing these methods by learning from existing experience.
  • The Infinite-Dimensional Topology of Function Spaces

    • 1st Edition
    • Volume 64
    • J. van Mill
    • English
    In this book we study function spaces of low Borel complexity.Technique... from general topology, infinite-dimensional topology, functional analysis and descriptive set theoryare primarily used for the study of these spaces. The mix ofmethods from several disciplines makes the subjectparticularly interesting. Among other things, a complete and self-contained proof of the Dobrowolski-Marcisze... Theorem that all function spaces of low Borel complexity are topologically homeomorphic, is presented.In order to understand what is going on, a solid background ininfinite-dimension... topology is needed. And for that a fair amount of knowledge of dimension theory as well as ANR theory is needed. The necessary material was partially covered in our previous book `Infinite-dimensiona... topology, prerequisites and introduction'. A selection of what was done there can be found here as well, but completely revised and at many places expanded with recent results. A `scenic' route has been chosen towards theDobrowolski-Marci... Theorem, linking theresults needed for its proof to interesting recent research developments in dimension theory and infinite-dimensional topology.The first five chapters of this book are intended as a text forgraduate courses in topology. For a course in dimension theory, Chapters 2 and 3 and part of Chapter 1 should be covered. For a course in infinite-dimensional topology, Chapters 1, 4 and 5. In Chapter 6, which deals with function spaces, recent research results are discussed. It could also be used for a graduate course in topology but its flavor is more that of a research monograph than of a textbook; it is thereforemore suitable as a text for a research seminar. The bookconsequently has the character of both textbook and a research monograph. In Chapters 1 through 5, unless statedotherwise, all spaces under discussion are separable andmetrizable. In Chapter 6 results for more general classes of spaces are presented.In Appendix A for easy reference and some basic facts that are important in the book have been collected. The book is not intended as a basis for a course in topology; its purpose is to collect knowledge about general topology.The exercises in the book serve three purposes: 1) to test the reader's understanding of the material 2) to supply proofs of statements that are used in the text, but are not proven there3) to provide additional information not covered by the text.Solutions to selected exercises have been included in Appendix B.These exercises are important or difficult.
  • Multivariate Polysplines

    Applications to Numerical and Wavelet Analysis
    • 1st Edition
    • Ognyan Kounchev
    • English
    Multivariate polysplines are a new mathematical technique that has arisen from a synthesis of approximation theory and the theory of partial differential equations. It is an invaluable means to interpolate practical data with smooth functions. Multivariate polysplines have applications in the design of surfaces and "smoothing" that are essential in computer aided geometric design (CAGD and CAD/CAM systems), geophysics, magnetism, geodesy, geography, wavelet analysis and signal and image processing. In many cases involving practical data in these areas, polysplines are proving more effective than well-established methods, such as kKriging, radial basis functions, thin plate splines and minimum curvature.
  • Surface Topology

    • 3rd Edition
    • P A Firby + 1 more
    • English
    This updated and revised edition of a widely acclaimed and successful text for undergraduates examines topology of recent compact surfaces through the development of simple ideas in plane geometry. Containing over 171 diagrams, the approach allows for a straightforward treatment of its subject area. It is particularly attractive for its wealth of applications and variety of interactions with branches of mathematics, linked with surface topology, graph theory, group theory, vector field theory, and plane Euclidean and non-Euclidean geometry.
  • Dynamical Models in Biology

    • 1st Edition
    • Miklós Farkas
    • English
    Dynamic Models in Biology offers an introduction to modern mathematical biology. This book provides a short introduction to modern mathematical methods in modeling dynamical phenomena and treats the broad topics of population dynamics, epidemiology, evolution, immunology, morphogenesis, and pattern formation. Primarily employing differential equations, the author presents accessible descriptions of difficult mathematical models. Recent mathematical results are included, but the author's presentation gives intuitive meaning to all the main formulae. Besides mathematicians who want to get acquainted with this relatively new field of applications, this book is useful for physicians, biologists, agricultural engineers, and environmentalists. Key Topics Include: Chaotic dynamics of populations The spread of sexually transmitted diseases Problems of the origin of life Models of immunology Formation of animal hide patterns The intuitive meaning of mathematical formulae explained with many figures Applying new mathematical results in modeling biological phenomena Miklos Farkas is a professor at Budapest University of Technology where he has researched and instructed mathematics for over thirty years. He has taught at universities in the former Soviet Union, Canada, Australia, Venezuela, Nigeria, India, and Columbia. Prof. Farkas received the 1999 Bolyai Award of the Hungarian Academy of Science and the 2001 Albert Szentgyorgyi Award of the Hungarian Ministry of Education.
  • An Introduction to Non-Harmonic Fourier Series, Revised Edition, 93

    • 2nd Edition
    • Robert M. Young
    • English
    An Introduction to Non-Harmonic Fourier Series, Revised Edition is an update of a widely known and highly respected classic textbook.Throughout the book, material has also been added on recent developments, including stability theory, the frame radius, and applications to signal analysis and the control of partial differential equations.
  • Banach Spaces

    • 1st Edition
    • Volume 1
    • English