Skip to main content

Books in Mathematics

The Mathematics collection presents a range of foundational and advanced research content across applied and discrete mathematics, including fields such as Computational Mathematics; Differential Equations; Linear Algebra; Modelling & Simulation; Numerical Analysis; Probability & Statistics.

  • Linear Algebra with Mathematica

    An Introduction Using Mathematica
    • 1st Edition
    • Fred Szabo
    • English
    Linear Algebra: An Introduction With Mathematica uses a matrix-based presentation and covers the standard topics any mathematician will need to understand linear algebra while using Mathematica. Development of analytical and computational skills is emphasized, and worked examples provide step-by-step methods for solving basic problems using Mathematica. The subject's rich pertinence to problem solving across disciplines is illustrated with applications in engineering, the natural sciences, computer animation, and statistics.
  • Advanced Calculus

    A Transition to Analysis
    • 1st Edition
    • Thomas P. Dence + 1 more
    • English
    Advanced Calculus explores the theory of calculus and highlights the connections between calculus and real analysis – providing a mathematically sophisticated introduction to functional analytical concepts. The text is interesting to read and includes many illustrative worked-out examples and instructive exercises, and precise historical notes to aid in further exploration of calculus. It covers exponential function, and the development of trigonometric functions from the integral. The text is designed for a one-semester advanced calculus course for advanced undergraduates or graduate students.
  • The Theory of Gambling and Statistical Logic

    • 2nd Edition
    • Richard A. Epstein
    • English
    Early in his rise to enlightenment, man invented a concept that has since been variously viewed as a vice, a crime, a business, a pleasure, a type of magic, a disease, a folly, a weakness, a form of sexual substitution, an expression of the human instinct. He invented gambling. Recent advances in the field, particularly Parrondo's paradox, have triggered a surge of interest in the statistical and mathematical theory behind gambling. This interest was acknowledge in the motion picture, "21," inspired by the true story of the MIT students who mastered the art of card counting to reap millions from the Vegas casinos. Richard Epstein's classic book on gambling and its mathematical analysis covers the full range of games from penny matching to blackjack, from Tic-Tac-Toe to the stock market (including Edward Thorp's warrant-hedging analysis). He even considers whether statistical inference can shed light on the study of paranormal phenomena. Epstein is witty and insightful, a pleasure to dip into and read and rewarding to study. The book is written at a fairly sophisticated mathematical level; this is not "Gambling for Dummies" or "How To Beat The Odds Without Really Trying." A background in upper-level undergraduate mathematics is helpful for understanding this work.
  • Introductory Differential Equations

    with Boundary Value Problems
    • 3rd Edition
    • Martha L. Abell + 1 more
    • English
    This text is for courses that are typically called (Introductory) Differential Equations, (Introductory) Partial Differential Equations, Applied Mathematics, Fourier Series and Boundary Value Problems. The text is appropriate for two semester courses: the first typically emphasizes ordinary differential equations and their applications while the second emphasizes special techniques (like Laplace transforms) and partial differential equations. The texts follows a "traditional" curriculum and takes the "traditional" (rather than "dynamical systems") approach. Introductory Differential Equations is a text that follows a traditional approach and is appropriate for a first course in ordinary differential equations (including Laplace transforms) and a second course in Fourier series and boundary value problems. Note that some schools might prefer to move the Laplace transform material to the second course, which is why we have placed the chapter on Laplace transforms in its location in the text. Ancillaries like Differential Equations with Mathematica and/or Differential Equations with Maple would be recommended and/or required ancillaries depending on the school, course, or instructor.
  • Sample Surveys: Inference and Analysis

    • 1st Edition
    • Volume 29B
    • English
    Handbook of Statistics_29B contains the most comprehensive account of sample surveys theory and practice to date. It is a second volume on sample surveys, with the goal of updating and extending the sampling volume published as volume 6 of the Handbook of Statistics in 1988. The present handbook is divided into two volumes (29A and 29B), with a total of 41 chapters, covering current developments in almost every aspect of sample surveys, with references to important contributions and available software. It can serve as a self contained guide to researchers and practitioners, with appropriate balance between theory and real life applications. Each of the two volumes is divided into three parts, with each part preceded by an introduction, summarizing the main developments in the areas covered in that part. Volume 1 deals with methods of sample selection and data processing, with the later including editing and imputation, handling of outliers and measurement errors, and methods of disclosure control. The volume contains also a large variety of applications in specialized areas such as household and business surveys, marketing research, opinion polls and censuses. Volume 2 is concerned with inference, distinguishing between design-based and model-based methods and focusing on specific problems such as small area estimation, analysis of longitudinal data, categorical data analysis and inference on distribution functions. The volume contains also chapters dealing with case-control studies, asymptotic properties of estimators and decision theoretic aspects.
  • Sample Surveys: Design, Methods and Applications

    • 1st Edition
    • Volume 29A
    • English
    This new handbook contains the most comprehensive account of sample surveys theory and practice to date. It is a second volume on sample surveys, with the goal of updating and extending the sampling volume published as volume 6 of the Handbook of Statistics in 1988. The present handbook is divided into two volumes (29A and 29B), with a total of 41 chapters, covering current developments in almost every aspect of sample surveys, with references to important contributions and available software. It can serve as a self contained guide to researchers and practitioners, with appropriate balance between theory and real life applications. Each of the two volumes is divided into three parts, with each part preceded by an introduction, summarizing the main developments in the areas covered in that part. Volume 29A deals with methods of sample selection and data processing, with the later including editing and imputation, handling of outliers and measurement errors, and methods of disclosure control. The volume contains also a large variety of applications in specialized areas such as household and business surveys, marketing research, opinion polls and censuses. Volume 29B is concerned with inference, distinguishing between design-based and model-based methods and focusing on specific problems such as small area estimation, analysis of longitudinal data, categorical data analysis and inference on distribution functions. The volume contains also chapters dealing with case-control studies, asymptotic properties of estimators and decision theoretic aspects.
  • Philosophy of Technology and Engineering Sciences

    • 1st Edition
    • English
    The Handbook Philosophy of Technology and Engineering Sciences addresses numerous issues in the emerging field of the philosophy of those sciences that are involved in the technological process of designing, developing and making of new technical artifacts and systems. These issues include the nature of design, of technological knowledge, and of technical artifacts, as well as the toolbox of engineers. Most of these have thus far not been analyzed in general philosophy of science, which has traditionally but inadequately regarded technology as mere applied science and focused on physics, biology, mathematics and the social sciences.
  • Advanced Mathematical Tools for Automatic Control Engineers: Volume 2

    Stochastic Systems
    • 1st Edition
    • Alexander S. Poznyak
    • English
    Advanced Mathematical Tools for Automatic Control Engineers, Volume 2: Stochastic Techniques provides comprehensive discussions on statistical tools for control engineers. The book is divided into four main parts. Part I discusses the fundamentals of probability theory, covering probability spaces, random variables, mathematical expectation, inequalities, and characteristic functions. Part II addresses discrete time processes, including the concepts of random sequences, martingales, and limit theorems. Part III covers continuous time stochastic processes, namely Markov processes, stochastic integrals, and stochastic differential equations. Part IV presents applications of stochastic techniques for dynamic models and filtering, prediction, and smoothing problems. It also discusses the stochastic approximation method and the robust stochastic maximum principle.
  • Boundary Value Problems

    and Partial Differential Equations
    • 6th Edition
    • David L. Powers
    • English
    Boundary Value Problems, Sixth Edition, is the leading text on boundary value problems and Fourier series for professionals and students in engineering, science, and mathematics who work with partial differential equations. In this updated edition, author David Powers provides a thorough overview of solving boundary value problems involving partial differential equations by the methods of separation of variables. Additional techniques used include Laplace transform and numerical methods.The book contains nearly 900 exercises ranging in difficulty from basic drills to advanced problem-solving exercises.Professors and students agree that Powers is a master at creating examples and exercises that skillfully illustrate the techniques used to solve science and engineering problems.