Biologically Inspired Series-Parallel Hybrid Robots: Design, Analysis and Control provides an extensive review of the state-of-the-art in series-parallel hybrid robots, covering all aspects of their mechatronic system design, modelling, and control. This book highlights the modular and distributed aspects of their mechanical, electronics, and software design, introducing various modern methods for modelling the kinematics and dynamics of complex robots. These methods are also introduced in the form of algorithms or pseudo-code which can be easily programmed with modern programming languages. Presenting case studies on various popular series-parallel hybrid robots which will inspire new robot developers, this book will be especially useful for academic and industrial researchers in this exciting field, as well as graduate-level students to bring them closer to the latest technology in mechanical design and control aspects of the area.
Leveraging Metaverse and Analytics of Things (AoT) in Medical Systems explores the potential benefits and applications of emerging technologies such as metaverse and AoT in the field of healthcare. The book provides insights into how these technologies can be leveraged to improve the efficiency, effectiveness, and quality of medical systems. It explores the concept of metaverse and its potential applications in healthcare, including the use of virtual and augmented reality technologies for medical education, training, and simulation, as well as the development of immersive environments for patient care and therapy.The book also delves into the field of AoT, such as the use of wearable devices, smart sensors, and other connected technologies. Applications to monitor patient health, track medical outcomes, and inform clinical decision-making are covered. Integrating both technologies can help improve medical training, diagnosis, treatment, and patient outcomes through the use of virtual reality and real-time data analytics.
Case Studies in Mathematical Modelling for Medical Devices: How Pulse Oximeters and Doppler Ultrasound Fetal Heart Rate Monitors Work focuses on two medical devices: pulse oximeters and Doppler ultrasound fetal heart rate monitors. The mathematical topics needed to explain their operation from first principles are introduced. These broadly cover the statistics of random processes and Fourier based signal processing. They are used to explain the devices’ operation from first principles to how clinically relevant information is extracted from the devices’ raw outputs. .The book is for MSc and PhD students working in the area who want a quick, clear introduction to the topics, upper-division undergrads as part of biomedical engineering or applied math degree courses, biomedical engineers looking for a quick "refresher course" and clinicians interested in the operation of the instruments they use.
Exploring Engineering: An Introduction to Engineering and Design, Sixth Edition explores the world of engineering by introducing the reader to what engineers do, the fundamental principles that form the basis of their work, and how they apply that knowledge within a structured design process. The three-part organization of the text reinforces these areas, making this an ideal introduction for anyone interested in exploring the various fields of engineering and learning how engineers work to solve problems. This new edition has been revised with new mini-design projects, more content on ethics, and more examples throughout the text on the use of significant figures.
Digital Technology in Public Health and Rehabilitation Care: COVID Era provides an in-depth examination on how digital technology has impacted public health and rehabilitation during the COVID-19 pandemic. The book showcases the range of digital technology applications utilized in healthcare, including the use of mobile phones, computers, wearable and non-wearable technologies, sensors, 3D printers, robotics, Artificial Intelligence (AI), internet technologies, websites and apps, virtual and augmented realities, and computer games. With a wealth of case studies and insights, this book is an essential resource on the impact of digital technology on public health and rehabilitation services in the COVID-19 era. The COVID-19 pandemic had a major impact on the rehabilitation services available to those in need, particularly for older adults, people with physical and cognitive impairments, children with autism and ADHD, and individuals with physical and mental health disorders. In response to these challenges, the book focuses on the potential for advanced digital technologies to revolutionize public health and rehabilitation services, highlighting the need for researchers and healthcare professionals to work together to promote digital-based interventions.
Designing Successful Products with Plastics: Plastic Part Design with Sustainability in Mind, Second Edition provides expert insights into the design considerations required to bring a concept product or part through design and ready-for-production. Rather than focusing on design rules and engineering equations used during product development, the emphasis of the book is on what the designer needs to consider during the early conceptual visualization stages, and in the detailed stages of the design process. This fully updated edition features new practical advice on how to design sustainably throughout the book.This approach will bridge the gap between the industrial designer, tasked with the ‘big picture’ product design and use, and the part designer, tasked with the detailed plastic part design for manufacture. Useful to both experienced and novice designers, this book brings valuable design process information through specific examples, enabling designers and engineers in the plastics industry to effectively use the available technical information to successfully design and manufacture new products.
Deep Learning Applications in Translational Bioinformatics, a new volume in the Advances in Ubiquitous Sensing Application for Healthcare series, offers a detailed overview of basic bioinformatics, deep learning, and various applications of deep learning in translational bioinformatics, including deep learning ensembles, deep learning in protein classification, detection of various diseases, prediction of antiviral peptides, identification of antibiotic resistance, computer aided drug design and drug formulation. This new volume helps researchers working in the field of machine learning and bioinformatics foster future research and development.
Cartilage, Tissue and Knee Joint Biomechanics: Fundamentals, Characterization and Modelling is a cutting-edge multidisciplinary book specifically focused on modeling, characterization and related clinical aspects. The book takes a comprehensive approach towards mechanics, fundamentals, morphology and properties of Cartilage Tissue and Knee Joints. Leading researchers from health science, medical technologists, engineers, academics, government, and private research institutions across the globe have contributed to this book. This book is a very valuable resource for graduates and postgraduates, engineers and research scholars. The content also includes comprehensive real-world applications. As a reference for the total knee arthroplasty, this book focuses deeply on existing related theories (including: histology, design, manufacturing and clinical aspects) to assist readers in solving fundamental and applied problems in biomechanical and biomaterials characterization, modeling and simulation of human cartilages and cells. For biomedical engineers dealing with implants and biomaterials for knee joint injuries, this book will guide you in learning the knee anatomy, range of motion, surgical procedures, physiological loading and boundary conditions, biomechanics of connective soft tissues, type of injuries, and more.
Pervasive Cardiac and Respiratory Monitoring Devices: Model-Based Design is the first book to combine biomedical instrumentation and model-based design. As the scope is limited to cardiac and respiratory devices only, this book offers more depth of information on these devices; focusing in on signals used for home monitoring and offering additional analysis of these devices. The author offers an insight into new industry and research trends, including advances in contactless monitoring of breathing and heart rate. Each chapter presents a section on current trends. As instrumentation as a field is becoming increasingly smart, basic signal processing is also discussed. Real case-studies for each modelling approach are used, primarily covering blood pressure, ECG and radar-based devices.This title is ideal for teaching and supporting learning as it is written in an accessible style and a solutions manual for the problem sets is provided. It will be useful to 4th year undergraduate students, graduate/masters/PhD students, early career researchers and professionals working on an interdisciplinary project; as it introduces the field and provides real world applications. For engineers this book solves the problem of how to assess and calibrate a medical device to ensure the data collected is trustworthy. For students, this book allows for trying concepts and circuits via simulations and learning modeling techniques. Students will learn concepts from this book and be ready to design bioinstrumentations devices based on specifications/requirements.
Reduced Order Models for the Biomechanics of Living Organs, a new volume in the Biomechanics of Living Organisms series, provides a comprehensive overview of the state-of-the-art in biomechanical computations using reduced order models, along with a deeper understanding of the associated reduction algorithms that will face students, researchers, clinicians and industrial partners in the future. The book gathers perspectives from key opinion scientists who describe and detail their approaches, methodologies and findings. It is the first to synthesize complementary advances in Biomechanical modelling of living organs using reduced order techniques in the design of medical devices and clinical interventions, including surgical procedures. This book provides an opportunity for students, researchers, clinicians and engineers to study the main topics related to biomechanics and reduced models in a single reference, with this volume summarizing all biomechanical aspects of each living organ in one comprehensive reference.