Immunological Implications and Molecular Diagnostics of Genitourinary Cancer updates on recent accomplishments, unifying concepts, and future challenges in the study of tumor-associated immune cells, emphasizing genitourinary cancers. The presence of inflammatory immune cells in human tumors raise a fundamental question: How do cancer cells avoid destruction by immune attack? In principle, tumor development can be controlled by cytotoxic innate and adaptive immune cells, however, as tumors develop from neoplastic tissue to clinically detectable tumors, cancer cells evolve different mechanisms. This book covers research on the immunological implications of genitourinary cancer with a comprehensive view, especially surrounding diagnosis and cellular mechanisms.
Microbial Diversity in the Genomic Era presents insights on the techniques used for microbial taxonomy and phylogeny, along with their applications and respective pros and cons. Though many advanced techniques for the identification of any unknown bacterium are available in the genomics era, a far fewer number of the total microbial species have been discovered and identified to date. The assessment of microbial taxonomy and biosystematics techniques discovered and practiced in the current genomics era with suitable recommendations is the prime focus of this book.
Structural Biology in Immunology, Structure/Function of Novel Molecules of Immunologic Importance delivers important information on the structure and functional relationships in novel molecules of immunologic interest. Due to an increasingly sophisticated understanding of the immune system, the approach to the treatment of many immune-mediated diseases, including multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, and inflammatory bowel disease has been dramatically altered. Furthermore, there is an increasing awareness of the critical role of the immune system in cancer biology. The improved central structure function relationships presented in this book will further enhance our ability to understand what defects in normal individuals can lead to disease.
Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging, Volume 12 discusses and details almost all aspects of the autophagy machinery in the context of health, cancer and other pathologies. Autophagy is more widely accepted as beneficial given its role in eliminating ‘toxic assets’ and promoting cell viability, hence, it has emerged as a new and potent modulator of disease progression that is both scientifically intriguing and clinically relevant. As the latest release in the Autophagy book series, users will find a detailed explanation of the role of molecular mechanisms.
Osteoimmunology: Interactions of the Immune and Skeletal Systems, Second Edition, explores the advancements that have been made in the field during the last 40 years, including valuable information on our understanding of the interactions between hematopoietic, immune, and bone cells, now known as the field of osteoimmunology. This comprehensive work offers the most extensive summaries of research trends in the field and their translation into new therapeutics. Early chapters deal with the development of osteoblasts, osteoclasts, hematopoietic stem cells, T and B-lymphocytes, and communications between these cellular elements, while later sections contain discussions of the signaling pathways by which RANKL influences osteoclast development and function. Subsequent chapters explore the effects that estrogen has on bone and the immune system, the development of pathologic conditions, and the growing research around osteoporosis, Paget’s disease, the genetics of bone disease, and bone cancer metastasis.
The Cytokines of the Immune System catalogs cytokines and links them to physiology and pathology, providing a welcome and hugely timely tool for scientists in all related fields. In cataloguing cytokines, it lists their potential for therapeutic use, links them to disease treatments needing further research and development, and shows their utility for learning about the immune system. This book offers a new approach in the study of cytokines by combining detailed guidebook-style cytokine description, disease linking, and presentation of immunologic roles.
Since publication of the 4th Edition of The Autoimmune Diseases in 2006, the understanding of the immune mechanisms underlying autoimmunity and autoimmune disease has significantly deepened and broadened. This fully revised 5th Edition incorporates new material and combines common themes underlying inductive and effector mechanisms and therapies that relate generally to the autoimmune disorders. It discusses the biological basis of disease at genetic, molecular, cellular, and epidemiologic levels and includes expanded coverage of autoinflammatory disease and autoimmune responses to tumors.
The applicability of immunotechniques to a wide variety of research problems in many areas of biology and chemistry has expanded dramatically over the last two decades ever since the introduction of monoclonal antibodies and sophisticated immunosorbent techniques. Exquisitely specific antibody molecules provide means of separation, quantitative and qualitative analysis, and localization useful to anyone doing biological or biochemical research.This practical guide to immunotechniques is especially designed to be easily understood by people with little practical experience using antibodies. It clearly presents detailed, easy-to-follow, step-by-step methods for the widely used techniques that exploit the unique properties of antibodies and will help researchers use antibodies to their maximum advantage.
Antibody Fc is the first single text to synthesize the literature on the mechanisms underlying the dramatic variability of antibodies to influence the immune response. The book demonstrates the importance of the Fc domain, including protective mechanisms, effector cell types, genetic data, and variability in Fc domain function. This volume is a critical single-source reference for researchers in vaccine discovery, immunologists, microbiologists, oncologists and protein engineers as well as graduate students in immunology and vaccinology. Antibodies represent the correlate of protection for numerous vaccines and are the most rapidly growing class of drugs, with applications ranging from cancer and infectious disease to autoimmunity. Researchers have long understood the variable domain of antibodies, which are responsible for antigen recognition, and can provide protection by blocking the function of their target antigen. However, recent developments in our understanding of the protection mediated by antibodies have highlighted the critical nature of the antibody constant, or Fc domain, in the biological activity of antibodies. The Fc domain allows antibodies to link the adaptive and innate immune systems, providing specificity to a wide range of innate effector cells. In addition, they provide a feedback loop to regulate the character of the immune response via interactions with B cells and antigen-presenting cells.