Skip to main content

Supervised Machine Learning in Wind Forecasting and Ramp Event Prediction

  • 1st Edition - January 31, 2020
  • Latest edition
  • Authors: Harsh S. Dhiman, Dipankar Deb, Valentina Emilia Balas
  • Language: English
  • Paperback ISBN:
    9 7 8 - 0 - 1 2 - 8 2 1 3 5 3 - 7
  • eBook ISBN:
    9 7 8 - 0 - 1 2 - 8 2 1 3 6 7 - 4

Supervised Machine Learning in Wind Forecasting and Ramp Event Prediction provides an up-to- date overview on the broad area of wind generation and forecasting, with a focus on… Read more

Fall sale

Fall into Wisdom!

Save up to 25% off books and eBooks!

Elsevier academics book covers

Supervised Machine Learning in Wind Forecasting and Ramp Event Prediction provides an up-to- date overview on the broad area of wind generation and forecasting, with a focus on the role and need of Machine Learning in this emerging field of knowledge. Various regression models and signal decomposition techniques are presented and analyzed, including least-square, twin support and random forest regression, all with supervised Machine Learning. The specific topics of ramp event prediction and wake interactions are addressed in this book, along with forecasted performance.

Wind speed forecasting has become an essential component to ensure power system security, reliability and safe operation, making this reference useful for all researchers and professionals researching renewable energy, wind energy forecasting and generation.

Related books