Advanced Renewable Energy Conversion Technologies and Power Plant Engineering provides a one-stop resource that covers advanced renewable energy conversion and power plant engineering, offering a practical applications-oriented approach. The book begins by introducing renewable energy, basic thermodynamics, energy conversion, and power plants. This is followed by in-depth chapters that cover a specific renewable energy source and their conversion and power plant integration, including bioenergy, geothermal, hydroelectric, ocean energy, solar, photovoltaics, solar thermal, and wind. Finally, energy storage technologies are considered. Throughout the book, chapters are supported by modeling, performance analysis, and case studies.It will support anyone with an interest in renewable energy, energy conversion technologies, and power plant engineering, including advanced students, researchers, faculty, scientists, engineers, R&D, industry personnel, and policymakers.
Quantum Computing: Principles and Paradigms covers a broad range of topics, providing a state-of-the-art and comprehensive reference for the rapid progress in the field of quantum computing and related technologies from major international companies (such as IBM, Google, Intel, Rigetti, Q-Control) and academic researchers. This book appeals to a broad readership, as it covers comprehensive topics in the field of quantum computing, including hardware, software, algorithms, and applications, with chapters written by both academic researchers and industry developers.This book presents readers with the fundamental concepts of quantum computing research, along with the challenges involved in developing practical devices and applications.
Method of process systems in energy systems: Emerging energy systems part II, Volume Nine, the latest release in the Methods in Chemical Process Safety series, highlights new advances in the field, with this new volume presenting interesting chapters written by an international board of authors.
Gas-Solid Adsorption Thermodynamics tackles the underexplored role of thermodynamics in the energetics of gas-solid physical adsorption, examining and outlining their role in different adsorption-based heat transformation energy applications. The book deals with different adsorbate/adsorbent pairs from the rigor of adsorption thermodynamics and their utilization in various applications, providing a comprehensive overview of adsorption heat transformations from the perspective of adsorption thermodynamics. Chapters introduce diverse sorption applications using various adsorbent/adsorbate combinations and their thermodynamic characterizations.Finally, users will find comprehensive information on how adsorption thermodynamics affects system performances from an energetic standpoint given that thermodynamics are strongly related to the energetics of adsorption systems. Different chapters introduce the brief background of utilizing the gas-solid adsorption phenomenon in multifarious energy applications such as thermal management, desalination, volatile organic compound removal, etc.
Quantitative Geomorphology in the Artificial Intelligence Era: Applications of AI for Earth and Environmental Change focuses on bridging the gaps in this emerging discipline, it delves into the complex interplay between landforms and the processes that shape them, offering innovative solutions through AI and data-driven methods. The book addresses the standards, quality assessment of data, spatial and temporal analysis tools, and rigorous validation techniques in geomorphology. It uses computational intelligence as a pivotal tool alongside GIS, remote sensing, and other advanced technologies. Readers will find a holistic resource that fosters collaboration and knowledge exchange among geological fields, aiming to address geomorphological challenges, hazards, and solutions. By harnessing AI, GIS, remote sensing, machine learning, and geophysical techniques, it offers new dimensions to existing assessment methods and techniques.
Biomass Conversion and High-Value Utilization provides the theoretical foundations, methods, and latest applications on the conversion and utilization of biomass for bioenergy, biofuels, energy storage, and high-value products. The book combines the preparation methods, physical and chemical properties measurement methods, and specific applications of products from biomass via thermal, catalytic, and biological technologies. Divided into two parts, Part I examines the efficient conversion of biomass resources, explaining key concepts, methods, and technological bottlenecks. Part II explores the versatile utilization of functional carbon materials derived from biomass, including catalysts for biodiesel production, metal-air batteries, electrochemical sensors, and wearable electronics. Finally, the book provides an extensive review of each technology; each technology-specific chapter reviews the current and future market demand of the technology, evaluates the economic feasibility of the technology, including cost effectiveness, return on investment, profit forecast, etc., discusses the unique advantages of the technology compared to existing common methods or other alternative technologies, considers the feasibility and practicability of the technology in actual industrial production, and explains the regulatory and environmental requirements and limitations of the technology. Biomass Conversion and High-Value Utilization is an invaluable resource for researchers and students involved in biomass conversion to high-value fuels and other products, and will be of interest to anyone working in bioenergy, biofuels, energy storage, catalysis, electronics and devices, and functional carbon materials.
Additive Manufacturing of Magnetic Materials: Techniques, Materials, Applications, Opportunities and Challenges outlines different 3D printing techniques that can be employed to create an array of different magnetic materials, along with how these materials can be effectively applied. The book discusses the additive manufacturing (AM) of soft magnets, permanent (hard) magnets, 4D magnetic shape memory alloys, magnetocaloric materials, and rare earth based magnetic alloys. Different AM techniques are covered, including laser powder bed fusion, directed laser deposition, binder jetting, cold spray, and the different influences of these techniques on the microstructure of the material produced.Common challenges are highlighted with solutions also provided, and applications covered include magnetic shielding, actuators, sensors, robotics, and magnetic heat exchangers for solid state heat pumps.
Shield machines have long been used in tunnelling as a result of their high reliability, high efficiency and high value-added, providing a fast digging speed, high construction quality and low impact on the surrounding environment. However, with the rapid development of new-generation information technologies, big data, artificial intelligence technology, the field of shield equipment offers even greater potential. This book explores that potential, combining both theoretical and practical engineering applications of the new technologies
The Decentralized Hydrogen Revolution Using Artificial Intelligence, Internet of Things, and Blockchain is a unique and comprehensive resource that addresses the dynamic intersection of decentralized hydrogen communities and advanced technologies. The book provides a guide to understanding the transformative potential of artificial intelligence, Internet of Things, and blockchain in the context of decentralized hydrogen, from foundational principles to advanced applications. It provides practical insights into addressing environmental concerns, integrating innovative technologies, and formulating effective policies. The book begins by introducing decentralized hydrogen communities, their principles, and significance in sustainable energy. It differentiates hydrogen from fossil fuels, highlighting environmental benefits and the inclusive nature of decentralized hydrogen production. The exploration continues with electrolysis for hydrogen generation, types of electrolyzers, working principles, technological advancements, and their environmental and economic impacts. The role of fuel cells in clean energy is covered next, detailing types, advancements, integration in various applications, and environmental and economic impacts. The discussion then shifts to advanced Artificial Intelligence algorithms in hydrogen production, focusing on AI integration, smart production mechanisms, predictive analytics, and cybersecurity challenges. Blockchain trust in hydrogen networks is examined, emphasizing blockchain integration, trust and transparency, and smart contracts. The book also discusses Internet of Things connectivity for optimizing hydrogen systems and technologies, covering IoT integration, devices, real-time monitoring, and future trends. Economic considerations and policy frameworks in hydrogen production are addressed, including economic viability, policy implications, financial incentives, and regulatory challenges. Finally, the book summarises key insights, benefits, challenges, and the role of decentralized hydrogen communities in global energy. Decentralized Hydrogen: Using Artificial Intelligence, Internet of Things, and Blockchain is an invaluable reference for researchers, scientists, industry professionals, and policymakers involved in the hydrogen economy and will also be of interest to students seeking an overview of the subject.
Chalcone is one of the most versatile scaffolds with wide range of applications. It is used as a precursor for diverse classes of organic molecules, natural flavonoids and possesses interesting biological activities and physical properties like semiconductor, non-linear optical, fluorescence, and electronic properties to name a few. Chalcones have been the subject of intense research due to their biological activities and the ability to tweak their biological activity and other properties by small changes along the a, b-unsaturated backbone. Besides their inherent biological activities, they have found uses in food industry and cosmetic industry as additives, due to their UV protection properties. They have also found applications as chemosensors and probes. These diverse features make chalcones one of the most fascinating molecules Chalcones and their Derivatives: From Synthesis to Applications features this molecule, different methods and approaches to synthesis, significance of this scaffold in biology, and other diverse fields. It serves as a comprehensive literature guide for researchers and a reference material for the postgraduate students involved with the development and use of chalcone based molecules.