Skip to main content

Books in Physics

Physics titles offer comprehensive research and advancements across the fundamental and applied areas of physical science. From quantum mechanics and particle physics to astrophysics and materials science, these titles drive innovation and deepen understanding of the principles governing the universe. Essential for researchers, educators, and students, this collection supports scientific progress and practical applications across a diverse range of physics disciplines.

  • Inorganic Frameworks as Smart Nanomedicines

    • 1st Edition
    • Alexandru Mihai Grumezescu
    • English
    Inorganic Frameworks as Smart Nanocarriers for Drug Delivery brings together recent research in the area of inorganic frameworks for drug delivery. Different types of nanocarriers are presented and discussed in detail, providing an up-to-date overview on inorganic nanoparticles with pharmaceutical applications. Written by a diverse range of international academics, this book is a valuable reference resource for researchers in biomaterials, the pharmaceutical industry, and those who want to learn more about the current applications of inorganic smart nanocarriers.
  • Progress in Optics

    • 1st Edition
    • Volume 63
    • English
    Progress in Optics, Volume 63 is the latest release in a series that presents an overview of the state-of-the-art in optics research. In this update, readers will find timely chapters on measuring polarization states, quantum measurement, optical trapping, spatial/spectral correspondence for mono/poly chromatic light diffraction, and photonic fractional signal processing, amongst other timely topics.
  • Stress Waves in Non-Elastic Solids

    • 1st Edition
    • W. K. Nowacki
    • English
    Stress Waves in Non-Elastic Solids is a comprehensive presentation of the principles underlying the propagation of stress waves in non-elastic solids, with emphasis on wave problems in the theory of plasticity. This book exposes wave propagation problems for a range of material responses and justifies the hypotheses introduced in specialized theories and the simplifications made in the analysis of particular problems. Both analytical and numerical methods of solving problems are described, and a large number of solutions to specific problems of wave propagation in inelastic solids are given. This book is comprised of six chapters and begins with an overview of the fundamental equations of the dynamics of inelastic media. The dynamical properties of metals and soils are discussed, offering an account of the most representative theories of plasticity and viscoplasticity. The next chapter considers the basic definitions of discontinuity surfaces and the conditions that must to be satisfied across these surfaces. Certain mathematical fundamentals are given, referring to systems of differential equations, quasi-linear and semi-linear, of the first order. Initial and boundary value problems for hyperbolic equations are also formulated. The remaining chapters focus on methods of solving stress wave propagation problems, including one-dimensional plane waves and longitudinal-transve... waves. Wave propagation problems for elastic-plastic and elastic/viscoplastic media are treated in detail, along with the most important problem of shock waves in metals and soils. The last chapter deals with thermal wave propagation problems. This monograph will be a valuable resource for students and practitioners of engineering, physics, and mathematics.
  • Wave Mechanics

    Selected Reading in Physics
    • 1st Edition
    • Gunter Ludwig
    • D. ter Haar
    • English
    Selected Readings in Physics: Wave Mechanics provides information pertinent to the fundamental aspects of wave mechanics. This book discusses the discovery of quantum mechanics. Organized into two parts encompassing five chapters and eight papers, this book begins with an overview of the essential parts of a theory, including a mathematical system, a domain of determinable facts, and a system of prescriptions correlating mathematical quantities and physical facts. This text then describes the classical model of electrons as mass points. Other chapters consider the connections between mathematically calculated quantities and physically measured quantities. This book discusses as well the relationship between the concepts of frequency and energy. The final paper deals with the theory of collision processes in which the transition probabilities are determined by the asymptomatic behavior of aperiodic solutions. This book is a valuable resource for physicists, scientists, and research workers.
  • Nanostructures for the Engineering of Cells, Tissues and Organs

    From Design to Applications
    • 1st Edition
    • Alexandru Mihai Grumezescu
    • English
    Nanostructures for the Engineering of Cells: Tissues and Organs showcases recent advances in pharmaceutical nanotechnology, with particular emphasis on tissue engineering, organ and cell applications. The book provides an up-to-date overview of organ targeting and cell targeting using nanotechnology. In addition, tissue engineering applications, such as skin regeneration are also discussed. Written by a diverse range of international academics, this book is a valuable research resource for researchers working in the biomaterials, medical and pharmaceutical industries.
  • Atlas of Neutron Resonances

    Volume 1: Resonance Properties and Thermal Cross Sections Z= 1-60
    • 6th Edition
    • Said F. Mughabghab
    • English
    Atlas of Neutron Resonances: Resonance Properties and Thermal Cross Sections Z= 1-60, Sixth Edition, contains an extensive list of detailed individual neutron resonance parameters for Z=1-60, as well as thermal cross sections, capture resonance integrals, average resonance parameters and a short survey of the physics of thermal and resonance neutrons. The long introduction contains: nuclear physics formulas aimed at neutron physicists; topics of special interest such as valence neutron capture, nuclear level density parameters, and s-, p-, and d-wave neutron strength functions; and various comparisons of measured quantities with the predictions of nuclear models, such as the optical model. As in the last edition, additional features have been added to appeal to a wider spectrum of users. These include: spin-dependent scattering lengths that are of interest to solid-state physicists, nuclear physicists and neutron evaluators; calculated and measured Maxwellian average 5-keV and 30-keV capture cross sections of importance to astrophysicists involved in nucleosynthesis modeling; s-, p-, and d-wave average radiative widths; and, nuclear level density parameters.
  • Atlas of Neutron Resonances

    Volume 2: Resonance Properties and Thermal Cross Sections Z=61-102
    • 6th Edition
    • Said F. Mughabghab
    • English
    Atlas of Neutron Resonances: Resonance Properties and Thermal Cross Sections Z=61-102, Sixth Edition, contains an extensive list of detailed individual neutron resonance parameters for Z=61-102, thermal cross sections, capture and fission resonance integrals, average resonance parameters, and a short survey of the physics of thermal and resonance neutrons. The long introduction contains: nuclear physics formulas aimed at neutron physicists; topics of special interest such as valence neutron capture, nuclear level density parameters, and s-, p-, and d-wave neutron strength functions; and various comparisons of measured quantities with the predictions of nuclear models, such as the optical model neutron-induced fission. As in the last edition, additional features have been added to appeal to a wider spectrum of users. These include: spin-dependent scattering lengths that are of interest to solid-state physicists, nuclear physicists and neutron evaluators; calculated and measured Maxwellian average 5-keV and 30-keV capture cross sections of importance to astrophysicists involved in nucleosynthesis modeling; s-, p-, and d- wave average radiative widths; nuclear level density parameters; and average fission widths derived from average fission cross sections.
  • A Primer to the Theory of Critical Phenomena

    • 1st Edition
    • Jurgen M. Honig + 1 more
    • English
    A Primer to the Theory of Critical Phenomena provides scientists in academia and industry, as well as graduate students in physics, chemistry, and geochemistry with the scientific fundamentals of critical phenomena and phase transitions. The book helps readers broaden their understanding of a field that has developed tremendously over the last forty years. The book also makes a great resource for graduate level instructors at universities.
  • Physical Fundamentals of Nanomaterials

    • 1st Edition
    • Bangwei Zhang
    • English
    Physical Fundamentals of Nanomaterials systematically describes the principles, structures and formation mechanisms of nanomaterials, in particular the concepts, principles and theories of their physical properties as well as the most important and commonly used preparation methods. The book aims to provide readers with a basic understanding of how nanomaterials are synthesized as well as their resultant physical properties it therefore focuses on the science of nanomaterials rather than applications, serving as an excellent starting point for researchers, materials scientists and advanced students who already possess a basic knowledge of chemistry and physics.
  • Differential Forms on Electromagnetic Networks

    • 1st Edition
    • N. V. Balasubramanian + 2 more
    • English
    Differential Forms on Electromagnetic Networks deals with the use of combinatorial techniques in electrical circuit, machine analysis, and the relationship between circuit quantities and electromagnetic fields. The monograph is also an introduction to the organization of field equations by the methods of differential forms. The book covers topics such as algebraic structural relations in an electric circuit; mesh and node-pair analysis; exterior differential structures; generalized Stoke's theorem and tensor analysis; and Maxwell's electromagnetic equation. Also covered in the book are the applications for the field network model; oscillatory behavior of electric machines; and the rotation tensor in machine differential structures. The text is recommended for engineering students who would like to be familiarized with electromagnetic networks and its related topics.