Skip to main content

Books in Mathematics

The Mathematics collection presents a range of foundational and advanced research content across applied and discrete mathematics, including fields such as Computational Mathematics; Differential Equations; Linear Algebra; Modelling & Simulation; Numerical Analysis; Probability & Statistics.

  • Groups - Modular Mathematics Series

    • 1st Edition
    • Camilla Jordan + 1 more
    • English
    This text provides an introduction to group theory with an emphasis on clear examples. The authors present groups as naturally occurring structures arising from symmetry in geometrical figures and other mathematical objects. Written in a 'user-friendly' style, where new ideas are always motivated before being fully introduced, the text will help readers to gain confidence and skill in handling group theory notation before progressing on to applying it in complex situations. An ideal companion to any first or second year course on the topic.
  • Topological Theory of Dynamical Systems

    Recent Advances
    • 1st Edition
    • Volume 52
    • N. Aoki + 1 more
    • English
    This monograph aims to provide an advanced account of some aspects of dynamical systems in the framework of general topology, and is intended for use by interested graduate students and working mathematicians. Although some of the topics discussed are relatively new, others are not: this book is not a collection of research papers, but a textbook to present recent developments of the theory that could be the foundations for future developments.This book contains a new theory developed by the authors to deal with problems occurring in diffentiable dynamics that are within the scope of general topology. To follow it, the book provides an adequate foundation for topological theory of dynamical systems, and contains tools which are sufficiently powerful throughout the book.Graduate students (and some undergraduates) with sufficient knowledge of basic general topology, basic topological dynamics, and basic algebraic topology will find little difficulty in reading this book.
  • The Quantum Brain

    Theory and Implications
    • 1st Edition
    • A. Stern
    • English
    While for the majority of physicists the problem of the deciphering of the brain code, the intelligence code, is a matter for future generations, the author boldly and forcefully disagrees. Breaking with the dogma of classical logic he develops in the form of the conversion postulate a concrete working hypothesis for the actual thought mechanism.The reader is invited on a fascinating mathematical journey to the very edges of modern scientific knowledge. From lepton and quark to mind, from cognition to a logic analogue of the Schrödinger equation, from Fibonacci numbers to logic quantum numbers, from imaginary logic to a quantum computer, from coding theory to atomic physics - the breadth and scope of this work is overwhelming. Combining quantum physics, fundamental logic and coding theory this unique work sets the stage for future physics and is bound to titillate and challenge the imagination of physicists, biophysicists and computer designers. Growing from the author's matrix operator formalization of logic, this work pursues a synthesis of physics and logic methods, leading to the development of the concept of infophysics.The experimental verification of the proposed quantum hypothesis of the brain is presently in preparation in cooperation with the Cavendish Laboratory, Cambridge, UK, and, if proved positive, would have major theoretical implications. Even more significant should be the practical applications in such fields as molecular electronics and computer science, biophysics and neuroscience, medicine and education. The new possiblities that could be opened up by quantum level computing could be truly revolutionary.The book aims at researchers and engineers in technical sciences as well as in biophysics and biosciences in general. It should have great appeal for physicists, mathematicians, logicians and for philosophers with a mathematical bent.
  • Hausdorff Gaps and Limits

    • 1st Edition
    • Volume 132
    • R. Frankiewicz + 1 more
    • English
    Gaps and limits are two phenomena occuring in the Boolean algebra P(&ohgr;)/fin. Both were discovered by F. Hausdorff in the mid 1930's. This book aims to show how they can be used in solving several kinds of mathematical problems and to convince the reader that they are of interest in themselves. The forcing technique, which is not commonly known, is used widely in the text. A short explanation of the forcing method is given in Chapter 11. Exercises, both easy and more difficult, are given throughout the book.
  • Group Representations

    • 1st Edition
    • Volume 3
    • English
    This third volume can be roughly divided into two parts. The first part is devoted to the investigation of various properties of projective characters. Special attention is drawn to spin representations and their character tables and to various correspondences for projective characters. Among other topics, projective Schur index and projective representations of abelian groups are covered. The last topic is investigated by introducing a symplectic geometry on finite abelian groups.The second part is devoted to Clifford theory for graded algebras and its application to the corresponding theory for group algebras. The volume ends with a detailed investigation of the Schur index for ordinary representations. A prominant role is played in the discussion by Brauer groups together with cyclotomic algebras and cyclic algebras.
  • Computability, Complexity, and Languages

    Fundamentals of Theoretical Computer Science
    • 2nd Edition
    • Martin Davis + 2 more
    • English
    Computability, Complexity, and Languages is an introductory text that covers the key areas of computer science, including recursive function theory, formal languages, and automata. It assumes a minimal background in formal mathematics. The book is divided into five parts: Computability, Grammars and Automata, Logic, Complexity, and Unsolvability.
  • Composition Operators on Function Spaces

    • 1st Edition
    • Volume 179
    • R.K. Singh + 1 more
    • English
    This volume of the Mathematics Studies presents work done on composition operators during the last 25 years. Composition operators form a simple but interesting class of operators having interactions with different branches of mathematics and mathematical physics.After an introduction, the book deals with these operators on Lp-spaces. This study is useful in measurable dynamics, ergodic theory, classical mechanics and Markov process. The composition operators on functional Banach spaces (including Hardy spaces) are studied in chapter III. This chapter makes contact with the theory of analytic functions of complex variables. Chapter IV presents a study of these operators on locally convex spaces of continuous functions making contact with topological dynamics. In the last chapter of the book some applications of composition operators in isometries, ergodic theory and dynamical systems are presented. An interesting interplay of algebra, topology, and analysis is displayed.This comprehensive and up-to-date study of composition operators on different function spaces should appeal to research workers in functional analysis and operator theory, post-graduate students of mathematics and statistics, as well as to physicists and engineers.
  • Algebraic Groups and Number Theory

    • 1st Edition
    • Volume 139
    • Vladimir Platonov + 2 more
    • English
    This milestone work on the arithmetic theory of linear algebraic groups is now available in English for the first time. Algebraic Groups and Number Theory provides the first systematic exposition in mathematical literature of the junction of group theory, algebraic geometry, and number theory. The exposition of the topic is built on a synthesis of methods from algebraic geometry, number theory, analysis, and topology, and the result is a systematic overview ofalmost all of the major results of the arithmetic theory of algebraic groups obtained to date.
  • Handbook of Convex Geometry

    • 1st Edition
    • Bozzano G Luisa
    • English
    Handbook of Convex Geometry, Volume B offers a survey of convex geometry and its many ramifications and connections with other fields of mathematics, including convexity, lattices, crystallography, and convex functions. The selection first offers information on the geometry of numbers, lattice points, and packing and covering with convex sets. Discussions focus on packing in non-Euclidean spaces, problems in the Euclidean plane, general convex bodies, computational complexity of lattice point problem, centrally symmetric convex bodies, reduction theory, and lattices and the space of lattices. The text then examines finite packing and covering and tilings, including plane tilings, monohedral tilings, bin packing, and sausage problems. The manuscript takes a look at valuations and dissections, geometric crystallography, convexity and differential geometry, and convex functions. Topics include differentiability, inequalities, uniqueness theorems for convex hypersurfaces, mixed discriminants and mixed volumes, differential geometric characterization of convexity, reduction of quadratic forms, and finite groups of symmetry operations. The selection is a dependable source of data for mathematicians and researchers interested in convex geometry.
  • Combinatorial Problems and Exercises

    • 2nd Edition
    • L. Lovász
    • English
    The aim of this book is to introduce a range of combinatorial methods for those who want to apply these methods in the solution of practical and theoretical problems. Various tricks and techniques are taught by means of exercises. Hints are given in a separate section and a third section contains all solutions in detail. A dictionary section gives definitions of the combinatorial notions occurring in the book.Combinatorial Problems and Exercises was first published in 1979. This revised edition has the same basic structure but has been brought up to date with a series of exercises on random walks on graphs and their relations to eigenvalues, expansion properties and electrical resistance. In various chapters the author found lines of thought that have been extended in a natural and significant way in recent years. About 60 new exercises (more counting sub-problems) have been added and several solutions have been simplified.