Skip to main content

Books in Mathematics

The Mathematics collection presents a range of foundational and advanced research content across applied and discrete mathematics, including fields such as Computational Mathematics; Differential Equations; Linear Algebra; Modelling & Simulation; Numerical Analysis; Probability & Statistics.

  • An Introduction to Measure-Theoretic Probability

    • 2nd Edition
    • George G. Roussas
    • English
    An Introduction to Measure-Theoretic Probability, Second Edition, employs a classical approach to teaching the basics of measure theoretic probability. This book provides in a concise, yet detailed way, the bulk of the probabilistic tools that a student working toward an advanced degree in statistics, probability and other related areas should be equipped with. This edition requires no prior knowledge of measure theory, covers all its topics in great detail, and includes one chapter on the basics of ergodic theory and one chapter on two cases of statistical estimation. Topics range from the basic properties of a measure to modes of convergence of a sequence of random variables and their relationships; the integral of a random variable and its basic properties; standard convergence theorems; standard moment and probability inequalities; the Hahn-Jordan Decomposition Theorem; the Lebesgue Decomposition T; conditional expectation and conditional probability; theory of characteristic functions; sequences of independent random variables; and ergodic theory. There is a considerable bend toward the way probability is actually used in statistical research, finance, and other academic and nonacademic applied pursuits. Extensive exercises and practical examples are included, and all proofs are presented in full detail. Complete and detailed solutions to all exercises are available to the instructors on the book companion site. This text will be a valuable resource for graduate students primarily in statistics, mathematics, electrical and computer engineering or other information sciences, as well as for those in mathematical economics/finance in the departments of economics.
  • Mathematical Analysis Fundamentals

    • 1st Edition
    • Agamirza Bashirov
    • English
    The author’s goal is a rigorous presentation of the fundamentals of analysis, starting from elementary level and moving to the advanced coursework. The curriculum of all mathematics (pure or applied) and physics programs include a compulsory course in mathematical analysis. This book will serve as can serve a main textbook of such (one semester) courses. The book can also serve as additional reading for such courses as real analysis, functional analysis, harmonic analysis etc. For non-math major students requiring math beyond calculus, this is a more friendly approach than many math-centric options.
  • Effective Dynamics of Stochastic Partial Differential Equations

    • 1st Edition
    • Jinqiao Duan + 1 more
    • English
    Effective Dynamics of Stochastic Partial Differential Equations focuses on stochastic partial differential equations with slow and fast time scales, or large and small spatial scales. The authors have developed basic techniques, such as averaging, slow manifolds, and homogenization, to extract effective dynamics from these stochastic partial differential equations. The authors’ experience both as researchers and teachers enable them to convert current research on extracting effective dynamics of stochastic partial differential equations into concise and comprehensive chapters. The book helps readers by providing an accessible introduction to probability tools in Hilbert space and basics of stochastic partial differential equations. Each chapter also includes exercises and problems to enhance comprehension.
  • Advances in Computers

    • 1st Edition
    • Volume 93
    • English
    Since its first volume in 1960, Advances in Computers has presented detailed coverage of innovations in computer hardware, software, theory, design, and applications. It has also provided contributors with a medium in which they can explore their subjects in greater depth and breadth than journal articles usually allow. As a result, many articles have become standard references that continue to be of significant, lasting value in this rapidly expanding field.
  • Differential Forms

    Theory and Practice
    • 2nd Edition
    • Steven H. Weintraub
    • English
    Differential forms are a powerful mathematical technique to help students, researchers, and engineers solve problems in geometry and analysis, and their applications. They both unify and simplify results in concrete settings, and allow them to be clearly and effectively generalized to more abstract settings. Differential Forms has gained high recognition in the mathematical and scientific community as a powerful computational tool in solving research problems and simplifying very abstract problems. Differential Forms, Second Edition, is a solid resource for students and professionals needing a general understanding of the mathematical theory and to be able to apply that theory into practice.
  • Advances in Computers

    • 1st Edition
    • Volume 92
    • English
    Since its first volume in 1960, Advances in Computers has presented detailed coverage of innovations in computer hardware, software, theory, design, and applications. It has also provided contributors with a medium in which they can explore their subjects in greater depth and breadth than journal articles usually allow. As a result, many articles have become standard references that continue to be of significant, lasting value in this rapidly expanding field.
  • Introduction to Probability Models

    • 11th Edition
    • Sheldon M. Ross
    • English
    Introduction to Probability Models, Eleventh Edition is the latest version of Sheldon Ross's classic bestseller, used extensively by professionals and as the primary text for a first undergraduate course in applied probability. The book introduces the reader to elementary probability theory and stochastic processes, and shows how probability theory can be applied fields such as engineering, computer science, management science, the physical and social sciences, and operations research. The hallmark features of this text have been retained in this eleventh edition: superior writing style; excellent exercises and examples covering the wide breadth of coverage of probability topic; and real-world applications in engineering, science, business and economics. The 65% new chapter material includes coverage of finite capacity queues, insurance risk models, and Markov chains, as well as updated data. The book contains compulsory material for new Exam 3 of the Society of Actuaries including several sections in the new exams. It also presents new applications of probability models in biology and new material on Point Processes, including the Hawkes process. There is a list of commonly used notations and equations, along with an instructor's solutions manual. This text will be a helpful resource for professionals and students in actuarial science, engineering, operations research, and other fields in applied probability.
  • An Introduction to the Mathematics of Financial Derivatives

    • 3rd Edition
    • Ali Hirsa + 1 more
    • English
    An Introduction to the Mathematics of Financial Derivatives is a popular, intuitive text that eases the transition between basic summaries of financial engineering to more advanced treatments using stochastic calculus. Requiring only a basic knowledge of calculus and probability, it takes readers on a tour of advanced financial engineering. This classic title has been revised by Ali Hirsa, who accentuates its well-known strengths while introducing new subjects, updating others, and bringing new continuity to the whole. Popular with readers because it emphasizes intuition and common sense, An Introduction to the Mathematics of Financial Derivatives remains the only "introductory" text that can appeal to people outside the mathematics and physics communities as it explains the hows and whys of practical finance problems.
  • Hypersingular Integral Equations in Fracture Analysis

    • 1st Edition
    • Whye-Teong Ang
    • English
    Hypersingular Integral Equations in Fracture Analysis explains how plane elastostatic crack problems may be formulated and solved in terms of hypersingular integral equations. The unknown functions in the hypersingular integral equations are the crack opening displacements. Once the hypersingular integral equations are solved, the crack tip stress intensity factors, which play an important role in fracture analysis, may be easily computed. This title consists of six chapters: Elastic crack problems, fracture mechanics, equations of elasticity and finite-part integrals; Hypersingular integral equations for coplanar cracks in anisotropic elastic media; Numerical methods for solving hypersingular integral equations; Hypersingular boundary integral equation method for planar cracks in an anisotropic elastic body; A numerical Green's function boundary integral approach for crack problems; and Edge and curved cracks and piezoelectric cracks. This book provides a clear account of the hypersingular integral approach for fracture analysis, gives in complete form the hypersingular integral equations for selected crack problems, and lists FORTRAN programs of numerical methods for solving hypersingular integral equations.
  • Explorations in Topology

    Map Coloring, Surfaces and Knots
    • 2nd Edition
    • David Gay
    • English
    Explorations in Topology, Second Edition, provides students a rich experience with low-dimensional topology (map coloring, surfaces, and knots), enhances their geometrical and topological intuition, empowers them with new approaches to solving problems, and provides them with experiences that will help them make sense of future, more formal topology courses. The book's innovative story-line style models the problem-solving process, presents the development of concepts in a natural way, and engages students in meaningful encounters with the material. The updated end-of-chapter investigations provide opportunities to work on many open-ended, non-routine problems and, through a modified "Moore method," to make conjectures from which theorems emerge. The revised end-of-chapter notes provide historical background to the chapter's ideas, introduce standard terminology, and make connections with mainstream mathematics. The final chapter of projects provides ideas for continued research. Explorations in Topology, Second Edition, enhances upper division courses and is a valuable reference for all levels of students and researchers working in topology.