Skip to main content

Books in Fourier analysis

11-16 of 16 results in All results

Fourier Transforms in NMR, Optical, and Mass Spectrometry

  • 1st Edition
  • December 22, 1989
  • A.G. Marshall + 1 more
  • English
  • eBook
    9 7 8 - 1 - 4 8 3 2 - 9 3 8 4 - 4
Written by spectroscopists for spectroscopists, here is a book which is not only a valuable handbook and reference work, but also an ideal teaching text for Fourier transform methods as they are applied in spectroscopy. It offers the first unified treatment of the three most popular types of FT/spectroscopy, with uniform notation and complete indexing of specialized terms. All mathematics is self-contained, and requires only a knowledge of simple calculus. The main emphasis is on pictures and physical analogs rather than detailed algebra. Instructive problems, presented at the end of each chapter, offer extensions of the basic treatment. Solutions are given or outlined for all problems.The book offers a wealth of practical information to spectroscopists. Non-ideal effects are treated in detail: noise (source- and detector-limited); non-linear response; limits to spectrometer performance based on finite detection period, finite data size, mis-phasing, etc. Common puzzles and paradoxes are explained: e.g. use of mathematically complex variables to represent physically real quantities; interpretation of negative frequency signals; on-resonance vs. off-resonance response; interpolation (when it helps and when it doesn't); ultimate accuracy of the data; differences between linearly- and circularly-polarized radiation; multiplex advantage or disadvantage, etc.Chapter 1 introduces the fundamental line shapes encountered in spectroscopy, from a simple classical mass-on-a-spring model. The Fourier transform relationship between the time-domain response to a sudden impulse and the steady-state frequency-domain response (absorption and dispersion spectra) to a continuous oscillation is established and illustrated. Chapters 2 and 3 summarize the basic mathematics (definitions, formulas, theorems, and examples) for continuous (analog) and discrete (digital) Fourier transforms, and their practical implications. Experimental aspects which are common to the signal (Chapter 4) and noise (Chapter 5) in all forms of Fourier transform spectrometry are followed by separate chapters for treatment of those features which are unique to FT/MS, FT/optical, FT/NMR, and other types of FT/spectroscopy.The list of references includes both historical and comprehensive reviews and monographs, along with articles describing several key developments. The appendices provide instant access to FT integrals and fast algorithms as well as a pictorial library of common Fourier transform function pairs. The comprehensive index is designed to enable the reader to locate particular key words, including those with more than one name.

Fourier Series and Integrals

  • 1st Edition
  • October 28, 1985
  • H. Dym + 3 more
  • English
  • Paperback
    9 7 8 - 0 - 1 2 - 2 2 6 4 5 1 - 1
The ideas of Fourier have made their way into every branch of mathematics and mathematical physics, from the theory of numbers to quantum mechanics. Fourier Series and Integrals focuses on the extraordinary power and flexibility of Fourier's basic series and integrals and on the astonishing variety of applications in which it is the chief tool. It presents a mathematical account of Fourier ideas on the circle and the line, on finite commutative groups, and on a few important noncommutative groups. A wide variety of exercises are placed in nearly every section as an integral part of the text.

Mathematical Methods for Wave Phenomena

  • 1st Edition
  • July 27, 1984
  • Norman Bleistein
  • English
  • eBook
    9 7 8 - 0 - 0 8 - 0 9 1 6 9 5 - 8
Computer Science and Applied Mathematics: Mathematical Methods for Wave Phenomena focuses on the methods of applied mathematics, including equations, wave fronts, boundary value problems, and scattering problems. The publication initially ponders on first-order partial differential equations, Dirac delta function, Fourier transforms, asymptotics, and second-order partial differential equations. Discussions focus on prototype second-order equations, asymptotic expansions, asymptotic expansions of Fourier integrals with monotonic phase, method of stationary phase, propagation of wave fronts, and variable index of refraction. The text then examines wave equation in one space dimension, as well as initial boundary value problems, characteristics for the wave equation in one space dimension, and asymptotic solution of the Klein-Gordon equation. The manuscript offers information on wave equation in two and three dimensions and Helmholtz equation and other elliptic equations. Topics include energy integral, domain of dependence, and uniqueness, scattering problems, Green's functions, and problems in unbounded domains and the Sommerfeld radiation condition. The asymptotic techniques for direct scattering problems and the inverse methods for reflector imaging are also elaborated. The text is a dependable reference for computer science experts and mathematicians pursuing studies on the mathematical methods of wave phenomena.

Fast Transforms Algorithms, Analyses, Applications

  • 1st Edition
  • January 28, 1983
  • Douglas F. Elliott + 1 more
  • English
  • eBook
    9 7 8 - 0 - 0 8 - 0 9 1 8 0 6 - 8
This book has grown from notes used by the authors to instruct fast transform classes. One class was sponsored by the Training Department of Rockwell International, and another was sponsored by the Department of Electrical Engineering of The University of Texas at Arlington. Some of the material was also used in a short course sponsored by the University of Southern California. The authors are indebted to their students for motivating the writing of this book and for suggestions to improve it.

II: Fourier Analysis, Self-Adjointness

  • 1st Edition
  • Volume 2
  • September 28, 1975
  • Michael Reed + 1 more
  • English
  • Hardback
    9 7 8 - 0 - 1 2 - 5 8 5 0 0 2 - 5
  • eBook
    9 7 8 - 0 - 0 8 - 0 9 2 5 3 7 - 0
This volume will serve several purposes: to provide an introduction for graduate students not previously acquainted with the material, to serve as a reference for mathematical physicists already working in the field, and to provide an introduction to various advanced topics which are difficult to understand in the literature. Not all the techniques and application are treated in the same depth. In general, we give a very thorough discussion of the mathematical techniques and applications in quatum mechanics, but provide only an introduction to the problems arising in quantum field theory, classical mechanics, and partial differential equations. Finally, some of the material developed in this volume will not find applications until Volume III. For all these reasons, this volume contains a great variety of subject matter. To help the reader select which material is important for him, we have provided a "Reader's Guide" at the end of each chapter.