Optical Communications from a Fourier Perspective: Fourier Theory and Optical Fiber Devices and Systems covers Fourier theory and signal analysis over photonic components, including time lenses in optical communication. Sections cover wave propagation in optical waveguides based on Maxwell equations and the nonlinear Schrödinger equation. Optical Fourier transform in the form of time lens is covered, for example in modulation format conversion and spectrum magnification, and couplers and their use for optical discrete Fourier transformation are also discussed. Other important subjects are discussed such as shot noise, thermal noise and also the basics of four wave mixing in relation to time lenses. Detailed derivations and a deeper background for the chapters are provided in appendices where appropriate. Some of the theory is more generally applicable beyond optical communication and is of relevance also for communications engineering. The Fourier theory dimension of the book presents the relationship between Fourier series and Fourier integrals and also the related Laplace transform.
The unifying thread of this book is the topic of Weighted Norm Inequalities, but many other related topics are covered, including Hardy spaces, singular integrals, maximal operators, functions of bounded mean oscillation and vector valued inequalities. The emphasis is placed on basic ideas; problems are first treated in a simple context and only afterwards are further results examined.
"Beyond Wavelets" presents state-of-the-art theories, methods, algorithms, and applications of mathematical extensions for classical wavelet analysis. Wavelets, introduced 20 years ago byMorlet and Grossmann and developed very rapidly during the 1980's and 1990's, has created a common link between computational mathematics and other disciplines of science and engineering.Classical wavelets have provided effective and efficient mathematical tools for time-frequency analysis which enhances and replaces the Fourier approach.However, with the current advances in science and technology, there is an immediate need to extend wavelet mathematical tools as well. "Beyond Wavelets" presents a list of ideas and mathematicalfoundations for such extensions, including: continuous and digital ridgelets, brushlets, steerable wavelet packets, contourlets, eno-wavelets, spline-wavelet frames, and quasi-affine wavelets. Wavelet subband algorithms are extended to pyramidal directional and nonuniform filter banks. In addition, this volume includes amethod for tomographic reconstruction using a mechanical image model and a statistical study for independent adaptive signal representation.Investigators already familiar with wavelet methods from areas such as engineering, statistics, and mathematics will benefit by owning this volume.
An Introduction to Non-Harmonic Fourier Series, Revised Edition is an update of a widely known and highly respected classic textbook.Throughout the book, material has also been added on recent developments, including stability theory, the frame radius, and applications to signal analysis and the control of partial differential equations.
This book presents a set of basic properties of holomorphic mappings between complex normed spaces and between complex locally convex spaces. These properties have already achieved an almost definitive form and should be known to all those interested in the study of infinite dimensional Holomorphy and its applications.The author also makes ``incursions'' into the study of the topological properties of the spaces of holomorphic mappings between spaces of infinite dimension. An attempt is then made to show some of the several topologies that can naturally be considered in these spaces.Infinite dimensional Holomorphy appears as a theory rich in fascinating problems and rich in applications to other branches of Mathematics and Mathematical Physics.
This book is intended to serve as an invaluable reference for anyone concerned with the application of wavelets to signal processing. It has evolved from material used to teach "wavelet signal processing" courses in electrical engineering departments at Massachusetts Institute of Technology and Tel Aviv University, as well as applied mathematics departments at the Courant Institute of New York University and ÉcolePolytechnique in Paris.
Intended a both a textbook and a reference, Fourier Acoustics develops the theory of sound radiation uniquely from the viewpoint of Fourier Analysis. This powerful perspective of sound radiation provides the reader with a comprehensive and practical understanding which will enable him or her to diagnose and solve sound and vibration problems in the 21st Century. As a result of this perspective, Fourier Acoustics is able to present thoroughly and simply, for the first time in book form, the theory of nearfield acoustical holography, an important technique which has revolutionised the measurement of sound. Relying little on material outside the book, Fourier Acoustics will be invaluable as a graduate level text as well as a reference for researchers in academia and industry.
A collection of infrared and Raman spectra of 500 natural and synthetic polymers of industrial importance is presented in this book. A large variety of compounds are included, starting with linear polyolefins and finishing with complex biopolymers and related compounds. The spectra were registered using Infrared Fourier Transform Spectrometers in the laboratory of the All-Russia Institute of Forensic Sciences. The IR and Raman spectra are presented together on the same sheet. The accompanying data include general and structure formulae, CAS register numbers, and sample preparation conditions.Features of this book:• Continues the long tradition of publishing specific and standard data of new chemical compounds.• For low-molecular weight substances, complementary IR and Raman spectra are featured on the same sample and printed on the same page. This "fingerprint" data allows the substance of the sample to be identified without doubt.• An important feature of this unique collection of data is the increase in the identification precision of unknown substances.• Peak tables are available in digital (ASCII) format, on a diskette delivered with the book. This allows the user to search for unknowns.• All the spectra in the collection are base-line corrected.This book will be of interest to scientists involved in the synthesis of new polymeric materials, polymer identification, and quality control. Libraries of scientific institutes, research centers, and universities involved in vibrational spectroscopy will also find this collection invaluable.
Fourier Analysis and Boundary Value Problems provides a thorough examination of both the theory and applications of partial differential equations and the Fourier and Laplace methods for their solutions. Boundary value problems, including the heat and wave equations, are integrated throughout the book. Written from a historical perspective with extensive biographical coverage of pioneers in the field, the book emphasizes the important role played by partial differential equations in engineering and physics. In addition, the author demonstrates how efforts to deal with these problems have lead to wonderfully significant developments in mathematics. A clear and complete text with more than 500 exercises, Fourier Analysis and Boundary Value Problems is a good introduction and a valuable resource for those in the field.
The principal aim of this book is to give an introduction to harmonic analysis and the theory of unitary representations of Lie groups. The second edition has been brought up to date with a number of textual changes in each of the five chapters, a new appendix on Fatou's theorem has been added in connection with the limits of discrete series, and the bibliography has been tripled in length.