On Earth, lakes provide favorable environments for the development of life and its preservation as fossils. They are extremely sensitive to climate fluctuations and to conditions within their watersheds. As such, lakes are unique markers of the impact of environmental changes. Past and current missions have now demonstrated that water once flowed at the surface of Mars early in its history. Evidence of ancient ponding has been uncovered at scales ranging from a few kilometers to possibly that of the Arctic ocean. Whether life existed on Mars is still unknown; upcoming missions may find critical evidence to address this question in ancient lakebeds as clues about Mars’ climate evolution and its habitability potential are still preserved in their sedimentary record. Lakes on Mars is the first review on this subject. It is written by leading planetary scientists who have dedicated their careers to searching and exploring the questions of water, lakes, and oceans on Mars through their involvement in planetary exploration, and the analysis of orbital and ground data beginning with Viking up to the most recent missions. In thirteen chapters, Lakes on Mars critically discusses new data and explores the role that water played in the evolution of the surface of Mars, the past hydrological provinces of the planet, the possibility of heated lake habitats through enhanced geothermal flux associated with volcanic activity and impact cratering. The book also explores alternate hypotheses to explain the geological record. Topographic, morphologic, stratigraphic, and mineralogic evidence are presented that suggest successions of ancient lake environments in Valles Marineris and Hellas. The existence of large lakes and/or small oceans in Elysium and the Northern Plains is supported both by the global distribution of deltaic deposits and by equipotential surfaces that may reflect their past margins. Whether those environments were conducive to life has yet to be demonstrated but from comparison with our planet, their sedimentary deposits may provide the best opportunity to find its record, if any. The final chapters explore the impact of climate variability on declining lake habitats in one of the closest terrestrial analogs to Mars at the Noachian/Hesperian transition, identify the geologic, morphologic and mineralogic signatures of ancient lakes to be searched for on Mars, and present the case for landing the Mars Science Laboratory mission in such an environment.
This is the third edition by Sir Patrick Moore, one of the great presenters of astronomy in our time. It tells the epic story of the historical development of astronomy which caused a revolutionary change in human outlook, in its impact upon both scientific thinking and religious belief.
This book is a collection of lectures given in July 2007 at the Les Houches Summer School on "String Theory and the Real World: From particle physics to astrophysics."
The sixteen papers collected in this volume are expanded and revised versions of talks delivered at the Second International Conference on the Ontology of Spacetime, organized by the International Society for the Advanced Study of Spacetime (John Earman, President) at Concordia University (Montreal) from 9 to 11 June 2006. Most chapters are devoted to subjects directly relating to the ontology of spacetime. The book starts with four papers that discuss the ontological status of spacetime and the processes occurring in it from a point of view that is first of all conceptual and philosophical. The focus then slightly shifts in the five papers that follow, to considerations more directly involving technical considerations from relativity theory. After this, Time, Becoming and Change take centre stage in the next five papers. The book ends with two excursions into relatively uncharted territory: a consideration of the status of Kaluza-Klein theory, and an investigation of possible relations between the nature of spacetime and condensed matter physics, respectively.
Long before Galileo published his discoveries about Jupiter, lunar craters, and the Milky Way in the Starry Messenger in 1610, people were fascinated with the planets and stars around them. That interest continues today, and scientists are making new discoveries at an astounding rate. Ancient lake beds on Mars, robotic spacecraft missions, and new definitions of planets now dominate the news. How can you take it all in? Start with the new Encyclopedia of the Solar System, Second Edition.This self-contained reference follows the trail blazed by the bestselling first edition. It provides a framework for understanding the origin and evolution of the solar system, historical discoveries, and details about planetary bodies and how they interact—and has jumped light years ahead in terms of new information and visual impact. Offering more than 50% new material, the Encyclopedia includes the latest explorations and observations, hundreds of new color digital images and illustrations, and more than 1,000 pages. It stands alone as the definitive work in this field, and will serve as a modern messenger of scientific discovery and provide a look into the future of our solar system.
This book combines relativity, astrophysics, and cosmology in a single volume, providing an introduction to each subject that enables students to understand more detailed treatises as well as the current literature. The section on general relativity gives the case for a curved space-time, presents the mathematical background (tensor calculus, Riemannian geometry), discusses the Einstein equation and its solutions (including black holes, Penrose processes, and similar topics), and considers the energy-momentum tensor for various solutions. The next section on relativistic astrophysics discusses stellar contraction and collapse, neutron stars and their equations of state, black holes, and accretion onto collapsed objects. Lastly, the section on cosmology discusses various cosmological models, observational tests, and scenarios for the early universe.
This COSPAR Colloquium Series deals with the main achievements that were accomplished through the collaborative efforts among ISTP participants; the plasma dynamics of magnetic reconnection in a thin plasma sheet, the action of the solar wind on the plasma population in the plasma sheet and around the magnetotail boundary layer, the relationship between the substrom expansion region and the X-line formation in the magnetotail, and the temporal evolution of the dipolarization from from the near-Earth to the distant tail.
Modern Cosmology begins with an introduction to the smooth, homogeneous universe described by a Friedman-Robertson-Walker metric, including careful treatments of dark energy, big bang nucleosynthesis, recombination, and dark matter. From this starting point, the reader is introduced to perturbations about an FRW universe: their evolution with the Einstein-Boltzmann equations, their generation by primordial inflation, and their observational consequences. These consequences include the anisotropy spectrum of the cosmic microwave background (CMB) featuring acoustic peaks and polarization, the matter power spectrum with baryonic wiggles, and their detection via photometric galaxy surveys, redshift distortions, cluster abundances, and weak lensing. The book concludes with a long chapter on data analysis. Modern Cosmology is the first book to explain in detail the structure of the acoustic peaks in the CMB, the E/B decomposition in polarization which may allow for detection of primordial gravity waves, and the modern analysis techniques used on increasingly large cosmological data sets. Readers will gain the tools needed to work in cosmology and learn how modern observations are rapidly revolutionizing our picture of the universe.
Since the last joint IAU and COSPAR Colloquium in Gainesville in 1995, there have been dramatic changes in the field resulting from in-situ space experiments, Earth orbiting satellites and ground based observations. The brightest comet since the early years of the twentieth century, comet Hale-Bopp, appeared, giving an invaluable opportunity to see in action one great source of interplanetary dust. Similarly, the Leonid meteor shower has been at its most active since 1966, producing spectacular displays of meteors and allowing for an array of observational techniques, not available in 1966 to be used, while theory has also been refined to a level where very accurate predictions of the timing of meteor storms has become possible. Prior to the meeting a total eclipse of the Sun in South West England and North Europe was observed, traditionally a good opportunity to observe the Zodiacal cloud. The knowledge of the Near-Earth Asteroid population has also increased dramatically, with the increased study arising from the heightened awareness of the danger to Earth from such bodies. Extrasolar planets have been discovered since the last meeting and it is recognised that interplanetary dust in other Planetary Systems can now be studied. Since much of the dust observed in such systems is at a distance of order 100 AU from the star, this brings into focus the production of dust in the Edgeworth-Kuiper belt of our own system. Recent years have seen a recognition of the importance of dust originating outside our own system, that is now present in the near-Earth environment. As is always the case when great strides take place observationally, much theoretical work follows, and the same is true in this instance. While data about the planetary medium from Venus to Jupiter was beginning to be available at the meeting in 1995, the data from both Galileo and Ulysses have now been more fully analysed, with a corresponding increase in our knowledge. This book reflects the thematic approach adopted at the meeting, with a flow outwards (from meteors in the atmosphere, through zodiacal dust observation and interplanetary dust, to extra solar planetary systems) and returning (via the Edgeworth-Kuiper belt and comets) to the Earth, with laboratory studies of physical and chemical processes and the study of extra-terrestrial samples.
The COSPAR Colloquium on Solar-Terrestrial Magnetic Activity and Space Environment (STMASE) was held in the National Astronomy Observatories of Chinese Academy of Sciences (NAOC) in Beijing, China in September 10-12, 2001. The meeting was focused on five areas of the solar-terrestrial magnetic activity and space environment studies, including study on solar surface magnetism; solar magnetic activity, dynamical response of the heliosphere; space weather prediction; and space environment exploration and monitoring. A hot topic of space research, CMEs, which are widely believed to be the most important phenomenon of the space environment, is discussed in many papers. Other papers show results of observational and theoretical studies toward better understanding of the complicated image of the magnetic coupling between the Sun and the Earth, although little is still known little its physical background. Space weather prediction, which is very important for a modern society expanding into out-space, is another hot topic of space research. However, a long way is still to go to predict exactly when and where a disaster will happen in the space. In that sense, there is much to do for space environment exploration and monitoring. The manuscripts submitted to this Monograph are divided into the following parts: (1) solar surface magnetism, (2) solar magnetic activity, (3) dynamical response of the heliosphere, (4) space environment exploration and monitoring; and (5) space weather prediction. Papers presented in this meeting but not submitted to this Monograph are listed by title as unpublished papers at the end of this book.