LIMITED OFFER
Save 50% on book bundles
Immediately download your ebook while waiting for your print delivery. No promo code needed.
Silicate Glasses and Melts, Second Edition describes the structure-property-composition relationships for silicate glasses and melts from a geological and industrial perspecti… Read more
LIMITED OFFER
Immediately download your ebook while waiting for your print delivery. No promo code needed.
Silicate Glasses and Melts, Second Edition describes the structure-property-composition relationships for silicate glasses and melts from a geological and industrial perspective. Updated sections include (i) characterization of silicate melt and COHN fluid structure (with and without dissolved silicate components) with pressure, temperature, and redox conditions and responses of structural variables to chemical composition, (ii) determination of solubility and solution mechanisms of COHN volatiles in silicate melts and minerals and of solubility and solution mechanisms of silicate components in COHN fluids, and (iii) effects of very high pressure on structure and properties of melts and glasses.
This new book is an essential resource for researchers in a number of fields, including geology, geophysics, geoscience, volcanology, material science, glass science, petrology and mineralogy.
Geologists, geophysicists, geoscientists, volcanologists, material scientists, researchers in glass science, petrologists, and mineralogists
Chapter 1 – The Discovery of Silicate Melts;
An applied and Geological Perspective
Abstract
Introductory Comments
1.1. The Early History of Glass
1.1.1. The beginnings of an Art
1.1.2. An Industrial Revolution
1.2. Glass and Science
1.2.1. A Scientific Material
1.2.3. The Effects of Composition
1.3. The Discovery of Natural Melts
1.3.1. The Origin of Neptunism
1.3.2. From Extinct Volcanoes to Magma
1.3.2.1. New Importance of Silicate Melts
1.4. The Physical Chemistry of Melts
1.4.1. The Measurements of physical Properties
1.4.2. Toward the Glass Transition
1.4.3. The First Glimpses of Structure
1.4.4. The Search for New Compositions
1.4.5. A Geological Outlook
Chapter 2 - Glass Versus Melt
Abstract
Introductory Comments
2.1. Relaxation
2.1.1. Glass Transition Range
2.1.2. Vibrational vs. Configurational Relaxation
2.1.3. Relaxation Times
2.1.4. Maxwell Model
2.1.5. Local vs. Bulk Relaxation
2.2. Glass Transition
2.2.1. A Microscopic Picture
2.2.2. Rate Dependence of the Glass Transition
2.2.3. Fictive Temperature
2.2.4. Kauzmann Paradox and Residual Entropy
2.3. Configurational Properties
2.3.1. Thermal Properties
2.3.2. Volume Properties
2.3.3. Permanent Compaction of Glass
2.3.4. Permanent Compaction and Volatile Solubility
2.3.5. Configurational Entropy and Viscosity
2.3.6. Glass Formation
Chapter 3 - Glasses and Melts vs. Crystals
Abstract
Introductory Comments
3.1. Thermodynamic Properties
3.1.1. High-Temperature Enthalpy and Entropy
3.1.2. Low-Temperature Heat Capacity and Vibrational Entropy
3.1.3. Boson Peak
3.1.4. Configurational Entropy
3.2. Liquid-Like Character of Crystals
3.2.1. Glass-like transitions
3.2.2. Transitions
3.2.3. From Premelting to Melting and Crystallization
Chapter 4 – Structure and Property Concepts
Abstract
Introductory Comments
4.1. Bond Length, Bond Angle, and Bond Strength in Silicates
4.1.1. Definitions and Concepts of Bonding
4.1.2. Bond Strength, Bond Angle, and Composition
4.2. Basics of Silicate Structure
4.2.1. Oxygen Coordination Polyhedra
4.2.2. Network-Formers and Network-Modifiers
4.2.3. The NBO/T Parameter
4.3. The tetrahedral Oxygen Network
4.3.1. Bridging Oxygen Bonds
4.3.2. Network-Formers and Si-based Structural Units
4.3.3. Substitution of Si4+
4.3.3.1. Aluminum Substitution
4.3.3.2. Ferric Iron
4.3.3.3. Phosphorus
4.3.3.4. Titanium
4.4. Linkage between Tetrahedral Network Units
4.4.1. The Nature of Nonbridging Oxygens Bonds
4.2.2 Steric Hindrance and Ordering of Network-Modifying Cations
4.5. Composition, Bonding and Melt Properties
4.5.1. Transport Properties
4.5.1.1. Interrelationships of Transport Properties
4.5.2. Thermal Properties
4.6. Mixing, Order, and Disorder
4.6.1. Transport Properties and Cation Mixing
4.6.2. Thermal Properties and Cation Mixing
Chapter 5 – Silica
Abstract
Introductory Comments
5.1. An Outstanding Oxide
5.1.1. A Short Classification
5.1.2. Phase Transitions: Melting and Amorphization
5.2. Physical and Thermal Properties
5.2.1. Thermodynamics of Melting
5.2.2. Thermodynamic Properties
5.2.3. Volume Properties
5.2.4. Transport Properties
5.2.4.1. Viscosity
5.2.4.2. Diffusion
5.3. Structure of SiO2 Glass and Melt
5.3.1. Random Network Structure
5.3.2. Pseudocrystalline Structure Model
5.3.3. Numerical Simulations of Structure
5.4 Direct Structure Determination
5.4.1. Bond Angles and Bond Lengths
5.4.1.1. Pressure and Temperature
5.4.2. Multiple Structural Units
5.5. Structure-Property relations
Chapter 6 – Properties of Metal Oxide-Silica Systems
Abstract
Introductory Comments
6.1. Phase relationships
6.1.1. Liquidus and Solvus Relations
6.1.2. Energetics, Phase Stability, and Immiscibility
6.1.3. Steric Hindrance and Polymerized Structures
6.2 Thermal Properties
6.2.1. Enthalpy of Mixing
6.2.2. Thermodynamics of Melting
6.2.3. Activity-Composition Relations
6.2.4. Oxygen Activity and Acid-Base Reactions
6.2.5. Energetics of Mixing
6.2.5. Heat Capacity
6.3. Volume and Transport Properties
6.3.1. Volume, Expansion, and Compressibility
6.3.1.1. Volume and Thermal Expansion
6.3.1.2. Volume and Compressibility
6.3.2. Transport Properties
6.3.2.1. Viscosity
6.3.2.2. Diffusion
6.3.2.3. Electrical Conductivity
Chapter 7 – Structure of Metal Oxide-Silica Systems
Abstract
Introductory Comments
7.1. Modeling Structure
7.1.1. Pseudocrystalline and Quasichemical Models
7.1.2. Polymer Modeling
7.1.3. Thermodynamic Modeling
7.1.4. Computational Models
7.1.4.1. Bond Distance and Bond Angle
7.1.4.2. Multiple Silicate Species
7.1.4.3. Simulation of High-Pressure Structure
7.2. Direct Determination
7.2.1. Silicate Network
7.2.2. Network-Modifiers and Interconnectivity
7.2.3. Temperature and Pressure
7.2.3.1. Temperature
7.2.3.2. Pressure
7.3. Structure and Melt Properties
7.3.1. Thermal Properties
7.3.1.1. Liquidus Surfaces
7.3.1.2. Mixing
7.3.1.3. Mixed Alkali Effect
7.3.2. Physical Properties
7.3.2.1. Volume Properties
7.3.2.2. Transport Properties
Chapter 8 Properties of Aluminosilicate Systems
Abstract
Introductory Comments
8.1 Phase Relationships
8.1.1. Liquidus Relations
8.1.2. Energetics, Phase Stability, and Immiscibility
8.1.3. Glass Formation
8.2. Thermal Properties
8.2.1. Thermodynamics of Melting
8.2.2. Activity-Composition Relations
8.2.3. Energetics of Mixing
8.2.4. Heat Capacity
8.3. Physical Properties
8.3.1. Transport Properties
8.3.1.1. Viscosity
8.3.1.2. Diffusion
8.3.2. Volume, Expansion, and Compressibility
8.3.2.1. Volume and Thermal Expansion
8.3.2.2. Pressure and Compressibility
Chapter 9 – Structure of Aluminosilicate Glass and Melt
Abstract
Introductory Comments
9.1. Numerical Simulation of Structure
9.1.1. Compositions without Charge-Balance
9.1.1.1. Al2O3 Simulations
9.1.1.2. Al2O3-SiO2 Simulations
9.1.2. Compositions with Charge-Balanced Al3+
9.1.2.1. Mn+2/nO–Al2O3 Simulations
9.1.2.2. SiO2-Mn+n/2O-Mn+-AlnO2n Simulations
9.2. Direct Determination
9.2.1. Aluminate and Aluminosilicate with Al3+ Charge-Balance
9.2.1.1. Al2O3 Data
9.2.1.2. Al2O3-SiO2 Data
9.2.2. Charge-Balanced Al3+
9.2.2.1. Modifier Cation Data
9.2.2.2. Mn+2/nO–Al2O3 Data
9.2.2.3. Meta-Aluminosilicate Compositions
9.2.2.4. Peralkaline and Peraluminous Compositions
9.3. Temperature and Pressure
9.3.1. Temperature
9.3.2. Pressure
9.4. Structure and Properties of Aluminosilicate Melts
9.4.1. Thermal Properties
9.4.2. Physical Properties
9.4.2.1. Transport Properties
9.4.2.2. Volume Properties
Chapter 10 - Properties of Iron-Silicate Glasses and Melts
Abstract
Introductory Comments
10.1. Ferrous and Ferric Iron
10.1.1. Redox States
10.1.2. Oxygen Fugacity
10.1.3. Analysis of Redox Ratio
10.2. Phase Equilibria
10.2.1. Ferrosilicate Phase Relations
10.2.2. Ferrisilicate Phase Relations
10.2.3. Phase Relations in Complex Systems
10.3. Iron Redox Reactions
10.3.1. Temperature and Oxygen Fugacity
10.3.2. Temperature and Pressure
10.3.3. Oxygen Activity and Glass Basicity
10.3.4. Composition and Redox State
10.3.5. Water and Minor Components
10.3.6. Prediction of Iron Redox Ratio
10.3.7. Mechanisms of Redox Reactions
10.3.8. Kinetics of Redox Reactions
10.4. Thermal Properties
10.4.1. Thermodynamics of Melting
10.4.2. Activity-Composition Relations
10.4.3. Enthalpy of Mixing
10.4.4. Heat Capacity
10.5. Other Physical Properties
10.5.1. Density
10.5.2. Transport Properties
10.5.2.1. Transport Properties
10.5.2.2. Diffusion
Chapter 11 – Structure of Iron-Silicate Glasses and Melts
Abstract
Introductory Comments
11.1. Fe3+ Distribution in Ferrisilicate Systems
11.1.1. Ferric Iron Bond Length and Oxygen Coordination
11.1.2. Fe3+ Distribution versus Clustering
11.2. Fe2+ in Silicate Systems
11.2.1. Ferrous Iron Bond Length and Oxygen Coordination
11.3. Mixed Valence States
11.3.1. Redox Ratio and Oxygen Coordination
11.3.2. Iron-Silicate Interaction
11.3.3. Temperature and Pressure
11.3.3.1. Temperature
11.3.3.2. Pressure
11.4. Structure and Melt Properties
11.4.1. Thermal Properties
11.4.1.1. Configurational Properties
11.4.2. Physical Properties
11.4.2.1. Transport Properties
11.4.2.2. Volume Properties
Chapter 12 – Titanium-Bearing Systems
Abstract
Introductory Comments
12.1. Titanium Redox Reactions
12.2. Melting Relations
12.2.1. Liquidus Relations in Binary, Ternary and more Complex Systems
12.2.1.1. TiO2-SiO2
12.2.1.2. TiO2-Al2O3-SiO2
12.2.1.3. Mn+n/2-TiO2-SiO2
12.2.1.4. Multicomponent Systems
12.2.2. Titanium Solubility in Silicate Melts and Glasses
12.3. Thermal Properties
12.3.1. Activity-Composition Relations
12.3.2. Enthalpy, Entropy, and Heat Capacity
12.4. Physical Properties
12.4.1. Transport Properties
12.4.2. Volume, Expansion, and Compressibility
12.4.2.1. Molar Volume
12.4.2.2. Expansion and Compressibility
12.5 Structure
12.5.1. Oxygen Coordination, Ti4+ Concentration, and Composition
12.5.1.1. TiO2
12.5.1.2. TiO2-SiO2
12.5.1.3. Ti-bearing Multicomponent Glasses and Melts
12.5.2. (Ti, Si) Substitution versus Ti Clustering
12.5.3. Temperature and Pressure
12.6. Structure and Properties of Ti-bearing Melts
12.6.1. Thermal Properties
12.6.2. Physical Properties
Chapter 13 – Phosphorus in Silicate Systems
Abstract
Introductory Comments
13.1. Properties of Phosphorus-bearing Glasses and Melts
13.1.1. Phase Relations
13.1.1.1. Melting Relations in Chemically Simple Systems
13.1.1.2. Melting Relations in Chemically Complex Systems
13.1.1.3. Phosphorus Solubility in Silicate Glasses and Melts
13.1.2. Thermal Properties
13.1.3. Physical Properties
13.1.3.1. Transport Properties
13.1.3.2. Density, Volume, Compressibility and Expansion
13.2. Structure of Phosphorus-bearing Glasses and Melts
13.2.1. Oxygen Coordination, P5+ Concentration, and Composition
13.2.1.1. P2O5
13.2.1.2. Binary Phosphate Systems
13.2.1.3. Phosphosilicate Glasses and Melts
13.2.1.4. Phosphate in Metal Oxide-Alumina-Silica Systems
13.2.1.5. P5+ in Higher Coordination States
13.2.2. (P, Si) Substitution versus P Clustering
13.2.3. Structure and Temperature
13.3. Structure and Properties
13.3.1. Thermal Properties
13.3.2. Physical Properties
Chapter 14 - Properties of Hydrous Melt and Glass
Abstract
Introductory Comments
14.1 Phase Relations
14.1.1. Melting and Crystallization
14.1.2. Silicate-H2O Miscibility
14.1.3. Water Solubility
14.1.3.1. SiO2-H2O
14.1.3.2. Metal Oxide-SiO2-H2O
14.1.3.3. Aluminosilicate-H2O
14.1.4. Water Solubility and Mixed Volatiles
14.2. Thermodynamic Properties
14.2.1. Activity-Composition Relations
14.2.2. Heat Capacity and Enthalpy
14.3 Other Physical Properties
14.3.1. Transport Properties
14.3.1.1. Viscosity
14.3.1.2. Diffusivity
14.3.1.3. Conductivity
14.3.2. Volume, Compressibility, and Expansion
14.3.2.1. Density and Volume
14.3.2.2. Compressibility
Chapter 15 - Water Solution Mechanisms and Structure
Abstract
Introductory Comments
15.1. Water Speciation
15.1.1. Composition, Temperature, and Pressure
15.2. Hydrous Melt and Glass Structure
15.2.1. SiO2-H2O
15.2.2. Metal Oxide-Silica-H2O
15.2.3. Aluminosilicate-H2O
15.2.4. H2O and Other Oxide Components
15.3. Structure and Properties
15.3.1. Transport Properties and Structure
15.3.2. Volume Properties and Structure
15.3.3. Crystallization, Melting, and Structure
15.3.4. Water Solubility, Solution Mechanisms, and Structure
Chapter 16 – Reactive Silicate-C-O-H-N-S Systems
Abstract
Introductory Comments
16.1. Concepts
16.2. Carbon in C-O-H Systems
16.2.1. Solubility and Solution Mechanisms of Oxidized Carbon
16.2.1.1. Carbon Dioxide
16.2.2. Solubility and Solution Mechanisms of Reduced Carbon
16.2.2.1. Carbon Monoxide (CO)
16.2.2.2. Carbide
16.2.2.3. Methane (CH4)
16.2.3. Properties and Solution Mechanisms in (C-O-H) Systems
16.2.3.1. Thermal Properties
16.2.3.2. Transport Properties
16.2.3.3. Volume Properties
16.3. Sulfur in S-O-H Systems
16.3.1. Solubility and Solution Mechanisms of Oxidized Sulfur
16.3.2. Solubility and Solution Mechanisms of Reduced Sulfur
16.3.3. Properties and Solution Mechanisms in (S-O-H) Systems
16.3.3.1. Thermal Properties
16.3.3.2. Transport Properties
16.4. Nitrogen in N-O-H Systems
16.4.1. Solubility and Solution Mechanisms of Reduced Nitrogen
16.4.2. Oxynitride and Nitrosyl Substitution
16.4.2.1. Nitrosyl Groups
16.4.2.2. Oxynitride
16.4.3. Properties and Solution Mechanisms in (N-O-H) Systems
Chapter 17 – Noble Gases, Molecular, Species, Hydrogen, and Halogens
Abstract
Introductory Comments
17.1. Noble Gases
17.1.1. General Remarks
17.1.2.1. Glasses and Melts along Silica - Meta-Aluminate Joins (SiO2-Mx+1/xAlO2)
17.1.2.2. Peralkaline and Depolymerized Glasses and Melts
17.2. Molecular Species
17.2.1. Solubility and Solution Mechanisms
17.2.1.1. Nitrogen (N2)
17.2.1.2. Hydrogen (H2)
17.3. Halogens
17.3.1. Fluorine
17.3.1.1. Solubility
17.3.1.1. Solution Mechanisms
17.3.2. Chlorine
17.3.2.1. Solubility
17.3.2.2. Solution Mechanisms
17.3.2.3. Other Halogens
17.3.3. Properties and Solution Mechanisms
17.3.3.1. Liquidus Phase Relations
17.3.3.2. Transport Properties
Chapter 18 – Chemically Complex Melts and Natural Magma
Abstract
Introductory Comments
18.1. Structure
18.1.1. Degree of Polymerization, Network Formers, and Network Modifiers
18.1.2. Qn-Species in Complex Systems
18.2. Properties
18.2.1. Chemical Properties
18.2.1.1. Melting and Crystallization
18.2.1.2. Crystal/Liquid Equilibria
18.2.1.3. Redox Relations of Iron
18.2.1.4. Volatiles in Magmatic Liquids
18.2.1.4.1. Water
18.2.1.4.2. Mixed H2O-CO2
18.2.1.4.3. Sulfur
18.2.2. Physical Properties
18.2.2.1. Volume Properties
18.2.2.2. Transport Properties.
9.2.2.2.1. Viscosity, Pressure, and Temperature
9.2.2.2.2. Viscosity and Water
BM
PR