Skip to main content

Readings in Fuzzy Sets for Intelligent Systems

  • 1st Edition - May 12, 2014
  • Editors: Didier J. Dubois, Henri Prade, Ronald R. Yager
  • Language: English
  • eBook ISBN:
    9 7 8 - 1 - 4 8 3 2 - 1 4 5 0 - 4

Readings in Fuzzy Sets for Intelligent Systems is a collection of readings that explore the main facets of fuzzy sets and possibility theory and their use in intelligent systems.… Read more

Readings in Fuzzy Sets for Intelligent Systems

Purchase options

LIMITED OFFER

Save 50% on book bundles

Immediately download your ebook while waiting for your print delivery. No promo code needed.

Image of books

Institutional subscription on ScienceDirect

Request a sales quote
Readings in Fuzzy Sets for Intelligent Systems is a collection of readings that explore the main facets of fuzzy sets and possibility theory and their use in intelligent systems. Basic notions in fuzzy set theory are discussed, along with fuzzy control and approximate reasoning. Uncertainty and informativeness, information processing, and membership, cognition, neural networks, and learning are also considered. Comprised of eight chapters, this book begins with a historical background on fuzzy sets and possibility theory, citing some forerunners who discussed ideas or formal definitions very close to the basic notions introduced by Lotfi Zadeh (1978). The reader is then introduced to fundamental concepts in fuzzy set theory, including symmetric summation and the setting of fuzzy logic; uncertainty and informativeness; and fuzzy control. Subsequent chapters deal with approximate reasoning; information processing; decision and management sciences; and membership, cognition, neural networks, and learning. Numerical methods for fuzzy clustering are described, and adaptive inference in fuzzy knowledge networks is analyzed. This monograph will be of interest to both students and practitioners in the fields of computer science, information science, applied mathematics, and artificial intelligence.