
Quantum Information Processing, Quantum Computing, and Quantum Error Correction
An Engineering Approach
- 2nd Edition - February 20, 2021
- Imprint: Academic Press
- Author: Ivan B. Djordjevic
- Language: English
- Paperback ISBN:9 7 8 - 0 - 1 2 - 8 2 1 9 8 2 - 9
- eBook ISBN:9 7 8 - 0 - 1 2 - 8 2 1 9 8 7 - 4
The Second Edition of Quantum Information Processing, Quantum Computing, and Quantum Error Correction: An Engineering Approach presents a self-contained introduction to all aspec… Read more

Purchase options

Institutional subscription on ScienceDirect
Request a sales quoteThe Second Edition of Quantum Information Processing, Quantum Computing, and Quantum Error Correction: An Engineering Approach presents a self-contained introduction to all aspects of the area, teaching the essentials such as state vectors, operators, density operators, measurements, and dynamics of a quantum system. In additional to the fundamental principles of quantum computation, basic quantum gates, basic quantum algorithms, and quantum information processing, this edition has been brought fully up to date, outlining the latest research trends. These include:
Key topics include:
- Quantum error correction codes (QECCs), including stabilizer codes, Calderbank-Shor-Steane (CSS) codes, quantum low-density parity-check (LDPC) codes, entanglement-assisted QECCs, topological codes, and surface codes
- Quantum information theory, and quantum key distribution (QKD)
- Fault-tolerant information processing and fault-tolerant quantum error correction, together with a chapter on quantum machine learning. Both quantum circuits- and measurement-based quantum computational models are described
- The next part of the book is spent investigating physical realizations of quantum computers, encoders and decoders; including photonic quantum realization, cavity quantum electrodynamics, and ion traps
- In-depth analysis of the design and realization of a quantum information processing and quantum error correction circuits
This fully up-to-date new edition will be of use to engineers, computer scientists, optical engineers, physicists and mathematicians.
- A self-contained introduction to quantum information processing, and quantum error correction
- Integrates quantum information processing, quantum computing, and quantum error correction
- Describes the latest trends in the quantum information processing, quantum error correction and quantum computing
- Presents the basic concepts of quantum mechanics
- In-depth presentation of the design and realization of a quantum information processing and quantum error correction circuit
- Cover image
- Title page
- Table of Contents
- Copyright
- Dedication
- Preface
- About the Author
- Chapter 1. Introduction
- 1.1. Photon Polarization
- 1.2. The Concept of Qubit
- 1.3. The Spin-1/2 Systems
- 1.4. Quantum Gates and QIP
- 1.5. Quantum Teleportation
- 1.6. Quantum Error Correction Concepts
- 1.7. Quantum Key Distribution
- 1.8. Organization of the Book
- Chapter 2. Quantum Mechanics Fundamentals
- 2.1. Introduction
- 2.2. Eigenkets as Base Kets
- 2.3. Matrix Representations
- 2.4. Pauli Operators and Hadamard Gate
- 2.5. Density Operators
- 2.6. Quantum Measurements
- 2.7. Uncertainty Principle
- 2.8. Change of Basis
- 2.9. Time Evolution—Schrödinger Equation
- 2.10. Harmonic Oscillator
- 2.11. Angular Momentum
- 2.12. Spin-1/2 Systems
- 2.13. Hydrogen-Like Atoms and Beyond
- 2.14. Summary
- 2.15. Problems
- Chapter 3. Quantum Circuits and Modules
- 3.1. Single-Qubit Operations
- 3.2. Two-Qubit Operations
- 3.3. Generalization to N-Qubit Gates and Quantum Computation Fundamentals
- 3.4. Qubit Measurement (Revisited)
- 3.5. Gottesman–Knill and Solovay–Kitaev Theorems
- 3.6. Universal Quantum Gates
- 3.7. Quantum Teleportation
- 3.8. Computation-in-place
- 3.9. Summary
- 3.10. Problems
- Chapter 4. Quantum Information Processing Fundamentals
- 4.1. Quantum Information Processing Features
- 4.2. Superposition Principle, Quantum Parallelism, and QIP Basics
- 4.3. No-Cloning Theorem
- 4.4. Distinguishing the Quantum States
- 4.5. Quantum Entanglement
- 4.6. Operator-Sum Representation
- 4.7. Decoherence Effects, Depolarization, and Amplitude-Damping Channel Models
- 4.8. Quantum Computing Simulators
- 4.9. Summary
- 4.10. Problems
- Chapter 5. Quantum Algorithms and Methods
- 5.1. Quantum Parallelism (Revisited)
- 5.2. Deutsch's, Deutsch–Jozsa, and Bernstein–Vazirani Algorithms
- 5.3. Grover Search Algorithm
- 5.4. Quantum Fourier Transform
- 5.5. The Period of a Function and Shor's Factoring Algorithm
- 5.6. Simon's Algorithm
- 5.7. Quantum Phase Estimation
- 5.8. Classical/Quantum Computing Complexities and Turing Machines
- 5.9. Adiabatic Quantum Computing
- 5.10. Variational Quantum Eigensolver
- 5.11. Summary
- 5.12. Problems
- Chapter 6. Information Theory and Classical Error Correcting Codes
- 6.1. Classical Information Theory Fundamentals
- 6.2. Channel Coding Preliminaries
- 6.3. Linear Block Codes
- 6.4. Cyclic Codes
- 6.5. Bose–Chaudhuri–Hocquenghem Codes
- 6.6. Reed–Solomon Codes, Concatenated Codes, and Product Codes
- 6.7. Concluding Remarks
- 6.8. Problems
- Chapter 7. Quantum Information Theory Fundamentals
- 7.1. Introductory Remarks
- 7.2. Von Neumann Entropy
- 7.3. Holevo Information, Accessible Information, and Holevo Bound
- 7.4. Data Compression and Schumacher's Noiseless Quantum Coding Theorem
- 7.5. Quantum Channels
- 7.6. Quantum Channel Coding and Holevo–Schumacher–Westmoreland Theorem
- 7.7. Summary
- 7.8. Problems
- Chapter 8. Quantum Error Correction
- 8.1. Pauli Operators (Revisited)
- 8.2. Quantum Error Correction Concepts
- 8.3. Quantum Error Correction
- 8.4. Important Quantum Coding Bounds
- 8.5. Quantum Operations (Superoperators) and Quantum Channel Models
- 8.6. Summary
- 8.7. Problems
- Chapter 9. Quantum Stabilizer Codes and Beyond
- 9.1. Stabilizer Codes
- 9.2. Encoded Operators
- 9.3. Finite Geometry Interpretation
- 9.4. Standard Form of Stabilizer Codes
- 9.5. Efficient Encoding and Decoding
- 9.6. Nonbinary Stabilizer Codes
- 9.7. Subsystem Codes
- 9.8. Topological Codes
- 9.9. Surface Codes
- 9.10. Entanglement-Assisted Quantum Codes
- 9.11. Summary
- 9.12. Problems
- Chapter 10. Quantum LDPC Codes
- 10.1. Classical LDPC Codes
- 10.2. Dual-Containing Quantum LDPC Codes
- 10.3. Entanglement-Assisted Quantum LDPC Codes
- 10.4. Iterative Decoding of Quantum LDPC Codes
- 10.5. Spatially Coupled Quantum LDPC Codes
- 10.6. Summary
- 10.7. Problems
- Chapter 11. Fault-Tolerant Quantum Error Correction and Fault-Tolerant Quantum Computing
- 11.1. Fault-Tolerance Basics
- 11.2. Fault-Tolerant Quantum Computation Concepts
- 11.3. Fault-Tolerant Quantum Error Correction
- 11.4. Fault-Tolerant Quantum Computation
- 11.5. Accuracy Threshold Theorem
- 11.6. Surface Codes and Large-Scale Quantum Computing
- 11.7. Summary
- 11.8. Problems
- Chapter 12. Cluster State-based Quantum Computing
- 12.1. Cluster States
- 12.2. Universality of Cluster State-based Quantum Computing
- 12.3. Cluster State Processing and One-way Quantum Computation
- 12.4. Physical Implementations
- 12.5. Summary
- 12.6. Problems
- Chapter 13. Physical Implementations of Quantum Information Processing
- 13.1. Physical Implementation Basics
- 13.2. Nuclear Magnetic Resonance in Quantum Computing
- 13.3. Trapped Ions in Quantum Computing
- 13.4. Photonic Quantum Implementations
- 13.5. Photonic Implementation of Quantum Relay
- 13.6. Implementation of Quantum Encoders and Decoders
- 13.7. Cavity Quantum Electrodynamics-Based Quantum Information Processing
- 13.8. Quantum Dots in Quantum Information Processing
- 13.9. Summary
- 13.10. Problems
- Chapter 14. Quantum Machine Learning
- 14.1. Machine Learning Fundamentals
- 14.2. The Ising Model, Adiabatic Quantum Computing, and Quantum Annealing
- 14.3. Quantum Approximate Optimization Algorithm and Variational Quantum Eigensolver
- 14.4. Quantum Boosting
- 14.5. Quantum Random Access Memory
- 14.6. Quantum Matrix Inversion
- 14.7. Quantum Principal Component Analysis
- 14.8. Quantum Optimization-Based Clustering
- 14.9. Grover Algorithm-Based Global Quantum Optimization
- 14.10. Quantum K-Means
- 14.11. Quantum Support Vector Machine
- 14.12. Quantum Neural Networks
- 14.13. Summary
- 14.14. Problems
- Chapter 15. Quantum Key Distribution
- 15.1. Cryptography Basics
- 15.2. QKD Basics
- 15.3. No-Cloning Theorem and Distinguishing of Quantum States
- 15.4. Discrete Variable QKD Protocols
- 15.5. QKD Security
- 15.6. The Decoy-State Protocols
- 15.7. Measurement Device-Independent QKD Protocols
- 15.8. Twin-Field QKD Protocols
- 15.9. Information Reconciliation and Privacy Amplification
- 15.10. Quantum Optics and Gaussian Quantum Information Theory
- 15.11. Continuous Variable QKD
- 15.12. Summary
- 15.13. Problems
- Appendix. Abstract Algebra Fundamentals
- Index
- Edition: 2
- Published: February 20, 2021
- Imprint: Academic Press
- No. of pages: 838
- Language: English
- Paperback ISBN: 9780128219829
- eBook ISBN: 9780128219874
ID