LIMITED OFFER
Save 50% on book bundles
Immediately download your ebook while waiting for your print delivery. No promo code needed.
Volume one of Principles of Electron Optics: Basic Geometrical Optics, Second Edition, explores the geometrical optics needed to analyze an extremely wide range of instrumen… Read more
LIMITED OFFER
Immediately download your ebook while waiting for your print delivery. No promo code needed.
Volume one of Principles of Electron Optics: Basic Geometrical Optics, Second Edition, explores the geometrical optics needed to analyze an extremely wide range of instruments: cathode-ray tubes; the family of electron microscopes, including the fixed-beam and scanning transmission instruments, the scanning electron microscope and the emission microscope; electron spectrometers and mass spectrograph; image converters; electron interferometers and diffraction devices; electron welding machines; and electron-beam lithography devices.
The book provides a self-contained, detailed, modern account of electron optics for anyone involved with particle beams of modest current density in the energy range up to a few mega-electronvolts. You will find all the basic equations with their derivations, recent ideas concerning aberration studies, extensive discussion of the numerical methods needed to calculate the properties of specific systems and guidance to the literature of all the topics covered. A continuation of these topics can be found in volume two, Principles of Electron Optics: Applied Geometrical Optics.
The book is intended for postgraduate students and teachers in physics and electron optics, as well as researchers and scientists in academia and industry working in the field of electron optics, electron and ion microscopy and nanolithography.
Postgraduate students and teachers in physics and electron optics; researchers and scientists in academia and industry working in the field of electron optics, electron and ion microscopy, and nanolithography
Preface
1. Introduction
PART I – CLASSICAL MECHANICS
2. Relativistic Kinematics
3. Different Forms of Trajectory Equations
4. Variational Principles
5. Hamiltonian Optics
PART II – CALCULATION OF STATIC FIELDS
6. Basic Concepts and Equations
7. Series Expansions
8. Boundary-Value Problems
9. Integral Equations
10. The Boundary-Element Method
11. The Finite-Difference Method (FDM)
12. The Finite-Element Method (FEM)
13. Field-Interpolation Techniques
PART III – THE PARAXIAL APPROXIMATION
14. Introduction
15. Systems with an Axis of Rotational Symmetry
16. Gaussian Optics of Rotationally Symmetric Systems: Asymptotic Image Formation
17. Gaussian Optics of Rotationally Symmetric Systems: Real Cardinal Elements
18. Electron Mirrors
19. Quadrupole Lenses
20. Cylindrical Lenses
PART IV – ABERRATIONS
21. Introduction
22. Perturbation Theory: General Formalism
23. The Relation Between Permitted Types of Aberration and System Symmetry
24. The Geometrical Aberrations of Round Lenses
25. Asymptotic Aberration Coefficients
26. Chromatic Aberrations
27. Aberration Matrices and the Aberrations of Lens Combinations
28. The Aberrations of Mirrors and Cathode Lenses
29. The Aberrations of Quadrupole Lenses and Octopoles
30. The Aberrations of Cylindrical Lenses
31. Parasitic Aberrations
PART V – DEFLECTION SYSTEMS
32. Paraxial Properties of Deflection Systems
33. The Aberrations of Deflection Systems
PART VI – COMPUTER-AIDED ELECTRON OPTICS
34. Numerical Calculation of Trajectories, Paraxial Properties and Aberrations
Notes and References
Index
PH
EK