Pattern Recognition in Industry
- 1st Edition - March 30, 2005
- Author: Phiroz Bhagat
- Language: English
- Hardback ISBN:9 7 8 - 0 - 0 8 - 0 4 4 5 3 8 - 0
- eBook ISBN:9 7 8 - 0 - 0 8 - 0 4 5 6 0 2 - 7
"Find it hard to extract and utilise valuable knowledge from the ever-increasing data deluge?" If so, this book will help, as it explores pattern recognition technology and its con… Read more
Purchase options
Institutional subscription on ScienceDirect
Request a sales quote- "Find it hard to extract and utilise valuable knowledge from the ever-increasing data deluge?" If so, this book will help, as it explores pattern recognition technology and its concomitant role in extracting useful information to build technical and business models to gain competitive industrial advantage.
- *Based on first-hand experience in the practice of pattern recognition technology and its development and deployment for profitable application in Industry.
- Phiroz Bhagat is often referred to as the pioneer of neural net and pattern recognition technology, and is uniquely qualified to write this book. He brings more than two decades of experience in the "real-world" application of cutting-edge technology for competitive advantage in industry.
Two wave fronts are upon us today: we are being bombarded by an enormous amount of data, and we are confronted by continually increasing technical and business advances.
Ideally, the endless stream of data should be one of our major assets. However, this potential asset often tends to overwhelm rather than enrich. Competitive advantage depends on our ability to extract and utilize nuggets of valuable knowledge and insight from this data deluge. The challenges that need to be overcome include the under-utilization of available data due to competing priorities, and the separate and somewhat disparate existing data systems that have difficulty interacting with each other.
Conventional approaches to formulating models are becoming progressively more expensive in time and effort. To impart a competitive edge, engineering science in the 21st century needs to augment traditional modelling processes by auto-classifying and self-organizing data; developing models directly from operating experience, and then optimizing the results to provide effective strategies and operating decisions. This approach has wide applicability; in areas ranging from manufacturing processes, product performance and scientific research, to financial and business fields.
This monograph explores pattern recognition technology, and its concomitant role in extracting useful knowledge to build technical and business models directly from data, and in optimizing the results derived from these models within the context of delivering competitive industrial advantage. It is not intended to serve as a comprehensive reference source on the subject. Rather, it is based on first-hand experience in the practice of this technology: its development and deployment for profitable application in industry.
The technical topics covered in the monograph will focus on the triad of technological areas that constitute the contemporary workhorses of successful industrial application of pattern recognition. These are: systems for self-organising data; data-driven modelling; and genetic algorithms as robust optimizers.
- No. of pages: 200
- Language: English
- Edition: 1
- Published: March 30, 2005
- Imprint: Elsevier Science
- Hardback ISBN: 9780080445380
- eBook ISBN: 9780080456027
PB
Phiroz Bhagat
Phiroz Bhagat pioneered the development and application of pattern recognition technology for technical and business operations in industry. He has developed and deployed state-of-the-art architectures, and brings to bear over two decades of experience in the application of cutting-edge technology for improved profitability and performance.
Dr. Bhagat graduated from the Indian Institute of Technology in Bombay, and earned his doctorate at the University of Michigan, Ann Arbor. He was a post-doctoral Research Fellow at Harvard University in Cambridge, Massachusetts, and taught thermodynamics and energy conversion as a faculty member at Columbia University in New York City. He then joined Exxon (now ExxonMobil) where he spearheaded major projects involving modeling and simulation of multi-million dollar plant units. His work in pattern recognition technology began in the late 1980s, and continues today. In January 2004 he co-founded International Strategy Engines, focusing on providing clients with cutting edge pattern recognition-based solutions for improved operations and profitability. He can be reached at [email protected].