Non-covalent Interactions in Quantum Chemistry and Physics
Theory and Applications
- 1st Edition - June 13, 2017
- Editors: Alberto Otero de la Roza, Gino A. DiLabio
- Language: English
- Paperback ISBN:9 7 8 - 0 - 1 2 - 8 0 9 8 3 5 - 6
- eBook ISBN:9 7 8 - 0 - 1 2 - 8 0 9 8 3 6 - 3
Non-covalent Interactions in Quantum Chemistry and Physics: Theory and Applications provides an entry point for newcomers and a standard reference for researchers publishin… Read more
Purchase options
Institutional subscription on ScienceDirect
Request a sales quoteNon-covalent Interactions in Quantum Chemistry and Physics: Theory and Applications provides an entry point for newcomers and a standard reference for researchers publishing in the area of non-covalent interactions. Written by the leading experts in this field, the book enables experienced researchers to keep up with the most recent developments, emerging methods, and relevant applications.
The book gives a comprehensive, in-depth overview of the available quantum-chemistry methods for intermolecular interactions and details the most relevant fields of application for those techniques. Theory and applications are put side-by-side, which allows the reader to gauge the strengths and weaknesses of different computational techniques.
- Summarizes the state-of-the-art in the computational intermolecular interactions field in a comprehensive work
- Introduces students and researchers from related fields to the topic of computational non-covalent interactions, providing a single unified source of information
- Presents the theoretical foundations of current quantum mechanical methods alongside a collection of examples on how they can be applied to solve practical problems
Chemistry and physics researchers at advanced undergraduate, graduate, and researcher level in both industry and academia that are interested in the computational modelling of processes involving intermolecular interactions. Also, researchers in related fields that use density-functional theory to study processes of chemical, biological, and technological relevance.
Foreword
Axel D. Becke
Part I: Theory
1. Physical Basis of Intermolecular Interactions
Anthony J. Stone
2. Energy Partition Analyses: Symmetry-Adapted Perturbation Theory and Other Techniques
E. Francisco and A. Martin Pendas
3. Intermolecular Interaction Energies from Kohn-Sham Random Phase Approximation Correlation Methods
Andreas Heßelmann
4. Wavefunction Theory Approaches to Non-covalent Interactions
C. David Sherrill
5. The Exchange-Hole Dipole Moment Dispersion Model
Erin R. Johnson
6. A Comprehensive Overview of the DFT-D3 London-Dispersion Correction
Lars Goerigk
7. Atom-centered Potentials for Non-covalent Interactions and Other Applications
Gino A. DiLabio
8. The vdW-DF Family of Non-Local Exchange-Correlation Functionals
Elsebeth Schroder, Valentino R. Cooper, Kristian Berland, Bengt I. Lundqvist, Per Hyldgaard, and Timo Thonhauser
Part II: Applications
9. Non-covalent Interactions in Organic Electronic Materials
Mahesh Kumar Ravva, Chad Risko, and Jean-Luc Bredas
10. Non-covalent Interactions in Molecular Crystals
Gregory J. O. Beran, Yonaton N. Heit, and Joshua D. Hartman
11. Molecular Crystal Structure Prediction
Sarah L. Price and Jan Gerit Brandenburg
12. Non-covalent Interactions and Environment Effects
Benedetta Mennucci
13. Surface Adsorption
Jeffrey R. Reimers, Musen Li, Dongya Wan, Tim Gould, and Michael J. Ford
14. Non-covalent Interactions in Nanotechnology
Valentino R. Cooper, Christopher N. Lam, Yangyang Wang, and Bobby G. Sumpter
- No. of pages: 476
- Language: English
- Edition: 1
- Published: June 13, 2017
- Imprint: Elsevier
- Paperback ISBN: 9780128098356
- eBook ISBN: 9780128098363
AO
Alberto Otero de la Roza
GD