Holiday book sale: Save up to 30% on print and eBooks. No promo code needed.
Save up to 30% on print and eBooks.
Nanomaterials Design for Sensing Applications
1st Edition - March 13, 2019
Editor: Olena V. Zenkina
Paperback ISBN:9780128145050
9 7 8 - 0 - 1 2 - 8 1 4 5 0 5 - 0
eBook ISBN:9780128145067
9 7 8 - 0 - 1 2 - 8 1 4 5 0 6 - 7
Nanomaterials Design for Sensing Applications examines chemosensors, beginning with molecules that are able to respond to certain stimuli and then showing their assembly and… Read more
Purchase options
LIMITED OFFER
Save 50% on book bundles
Immediately download your ebook while waiting for your print delivery. No promo code is needed.
Nanomaterials Design for Sensing Applications examines chemosensors, beginning with molecules that are able to respond to certain stimuli and then showing their assembly and incorporation into sensing materials. The mechanisms of their action for the detection of ions, specific molecules and biostructures, are also covered. A major theme is the affordability of sensors, with particular attention paid to inexpensive and reliable colorimetric sensors that can be read by the naked eye. The book also delves into the development of sensors that utilize existing RFID infrastructure and introduces a novel strategy for the development of self-healing sensing platforms.
This book will help readers develop a better understanding of the types of materials used for sensing at the nano level, while also providing an insightful overview on recent advances in this important area.
Demonstrates how the use of nanomaterials allows for the creation of cheaper, more reliable sensors
Shows how metal oxide nanostructures are used as both sensors and supports for embedded organic and organometallic sensing molecules
Explores a novel sensing methodology resulting from the integration of nanostructured sensors into radio frequency identification tags
Materials Scientists and Engineers in academia and industry R&D
1. Colorimetric Sensors and Sensor Arrays
2. Metal Oxide Nanostructures in Sensing
3. Nanostructured Materials for RFID Sensors
4. Organically Tailored Mesoporous Silicates Designed for Heavy Metal Sensing
5. Nano-sized structured platforms for facile solid phase nanoextraction for (bio)chemical analysis
6. Nanomaterial-based electrochemical sensors for environmental and energy applications
7. Proteins in Nanosized Biosensors
8. Stimuli-responsive Glyconanoparticles: It's Time to Get Sugar Smart
9. Stimuli-Responsive Materials Based on Gold(I) Complexes
10. Self-healing sensing platforms
No. of pages: 365
Language: English
Published: March 13, 2019
Imprint: Elsevier
Paperback ISBN: 9780128145050
eBook ISBN: 9780128145067
OZ
Olena V. Zenkina
Olena V. Zenkina studied chemical engineering at NTU"KPI", Kharkiv, Ukraine. After graduation, she joined the group of Prof. Milko van der Boom in the Weizmann Institute of Science, Rehovot, Israel. There she was working on her Ph.D. in chemistry exploring d-10 metals ring-walking over pi-conjugated systems. Her postdoctoral experience in the group of Prof. Cathleen M. Crudden at Queen's University, Kingston, Canada included the discovery of single crystal to single crystal transformations, development of novel oxygen sensors, and carbene self-assembled monolayers formation on gold surfaces. After accepting a position of Assistant Professor at the University of Ontario Institute of Technology in Oshawa, Canada, Dr. Zenkina is focused on synthetic methodologies for the creation of well-defined self-assembled architectures on various surface supports (transparent metal oxide surfaces, metal surfaces, paper, glass, etc.) and their application in microfabrication of molecular-based “smart” functional devices.
Affiliations and expertise
Assistant Professor at University of Ontario Institute of Technology, Canada