Holiday book sale: Save up to 30% on print and eBooks. No promo code needed.
Save up to 30% on print and eBooks.
Molecular Dynamics
From Classical to Quantum Methods
1st Edition - March 1, 1999
Editors: Perla Balbuena, Jorge M. Seminario
Hardback ISBN:9780444829108
9 7 8 - 0 - 4 4 4 - 8 2 9 1 0 - 8
eBook ISBN:9780080536842
9 7 8 - 0 - 0 8 - 0 5 3 6 8 4 - 2
The latest developments in quantum and classical molecular dynamics, related techniques, and their applications to several fields of science and engineering. Molecular simulations… Read more
Purchase options
LIMITED OFFER
Save 50% on book bundles
Immediately download your ebook while waiting for your print delivery. No promo code is needed.
The latest developments in quantum and classical molecular dynamics, related techniques, and their applications to several fields of science and engineering. Molecular simulations include a broad range of methodologies such as Monte Carlo, Brownian dynamics, lattice dynamics, and molecular dynamics (MD).
Features of this book:
• Presents advances in methodologies, introduces quantum methods and lists new techniques for classical MD
• Deals with complex systems: biomolecules, aqueous solutions, ice and clathrates, liquid crystals, polymers
• Provides chemical reactions, interfaces, catalysis, surface phenomena and solids
Although the book is not formally divided into methods and applications, the chapters are arranged starting with those that discuss new algorithms, methods and techniques, followed by several important applications.
1. Methods of incorporating quantum mechanical calculations into molecular dynamics stimulations (A. Laaksonen, Y. Tu). 2. Classical molecular dynamics simulations with quantum degrees of freedom (J. Brickmann, U. Schmitt). 3. Spatial structure in molecular liquids (P.G. Kusalik, A. Laaksonen, I.M. Svishchev). 4. Thermodynamic integration along coexistence lines (D.A. Kofke, J.A. Henning). 5. Energy minimization by smoothing techniques: A survey (S. Schelstraete, W. Schepens, H. Verschelde). 6. Ab initio and DFT for the strength of classical molecular dynamics simulations (J.M. Seminario). 7. Large scale parallel molecular dynamics simulations (F. Hedman, A. Laaksonen). 8. Combined MD simulation-NMR relaxation studies of molecular motion and intermolecular interactions (M. Odelius, A. Laaksonen). 9. Transport properties of liquid crystals via molecular dynamics simulation (S. Sarman). 10. Interaction potentials for small molecules (F.M. Floris, A. Tani). 11. Ab initio and molecular dynamics studies of cation-water interactions (P.B. Balbuena et al.). 12. Interpretation of inelastic neutron scattering spectra for water ice by lattice and molecular dynamic simulations (J. Li, J. Tomkinson). 13. Stability and dynamics of ice and clathrate hydrate (H. Tanaka). 14. Molecular dynamics studies of physically adsorbed fluid (W. Steele). 15. Molecular dynamics of thin films under shear (S. Jiang, J.F. Belak). 16. Molecular dynamics simulations of chemical reactions at liquid interfaces (I. Benjamin). 17. Molecular dynamics simulation of copper using CHARMM: Methodological considerations and initial results (H.E. Alper, P. Politzer). 18. Dynamic Monte Carlo simulations of oscillatory heterogeneous catalytic reactions (R.J. Gelten, R.A. van Santen, A.P.J. Jansen). 19. Polymerization of rodlike molecules (D.V. Khakhar). 20. Potential energy and free energy surfaces of floppy systems. Ab initio calculations and molecular dynamics simulations (P. Hobza). 21. Ways and means to enhance the configurational sampling of small peptides in aqueous solution in molecular dynamics simulations (F. Nardi, R.C. Wade). 22. Molecular dynamics of pectic substances (B. Manunza, S. Deiana, C. Gessa). Index.
No. of pages: 945
Language: English
Published: March 1, 1999
Imprint: Elsevier Science
Hardback ISBN: 9780444829108
eBook ISBN: 9780080536842
PB
Perla Balbuena
Affiliations and expertise
Department of Chemical Engineering, Texas A&M University, College Station, TAMU 3122, TX, USA
JS
Jorge M. Seminario
Affiliations and expertise
Department of Chemical Engineering, Texas A&M University, College Station, TAMU 3122, TX, USA