Modern Methods for Theoretical Physical Chemistry of Biopolymers
- 1st Edition - July 4, 2006
- Editors: Evgeni Starikov, James P. Lewis, Shigenori Tanaka
- Language: English
- Hardback ISBN:9 7 8 - 0 - 4 4 4 - 5 2 2 2 0 - 7
- eBook ISBN:9 7 8 - 0 - 0 8 - 0 4 6 1 0 1 - 4
Modern Methods for Theoretical Physical Chemistry of Biopolymers provides an interesting selection of contributions from an international team of researchers in theoretical chemis… Read more
Purchase options
Institutional subscription on ScienceDirect
Request a sales quote· Topics covered are of relevant importance to rapidly developing areas in science such as nanotechnology and molecular medicine
· Quality selection of contributions from renowned scientists in the field
Chapter 1. Theoretical development of the fragment molecular orbital (FMO) method
Chapter 2. Developments and applications of ABINIT-MP software based on the Fragment Molecular Orbital
Chapter 3. Combined DFT and electrostatic calculations of pKa's in proteins: Study of cytochrome c oxidase
Chapter 4. Watson-Crick hydrogen bonds: Nature and role in DNA replication
Chapter 5. Quantum chemical modeling of charge transfer in DNA
SECTION 2. Molecular Mechanics
Chapter 6. Solvent effects on biomolecular dynamics simulations: A comparison between TIP3P, SPC and SPC/E water models acting on the glucocorticoid receptor DNA-binding domain
Chapter 7. Computer simulations of DNA stretching
Chapter 8. On the art of computing the IR spectra of molecules in condensed phase
Chapter 9. High Throughput in-silico screening of large ligand databases for rational drug design
Chapter 10. Enzymatic recognition of radiation produced oxidative DNA lesion.
Molecular dynamics approach
Chapter 11. Nucleation of polyglutamine amyloid fibres modelling using molecular dynamics
Chapter 12. Drug discovery using grid technology
Chapter 13. Simple models for nonlinear states of double stranded DNA
Chapter 14. Thermodynamics and kinetic analysis of FoF1-ATPase
SECTION 3. Statistical Methods
Chapter 15. Monte Carlo method: Some applications to problems in protein science
Chapter 16. Protein structure generation and elucidation: Applications of automated histogram filtering cluster analysis
Chapter 17. All atom protein folding with stochastic optimization methods
SECTION 4. Model Hamiltonians
Chapter 18. The effects of bridge motion on electron transfer reactions mediated by tunneling
Chapter 19. Modeling molecular conduction in DNA wires: Charge transfer theories and dissipative quantum transport
Chapter 20. Electronic structure of DNA derivatives and mimics by Density Functional Theory
Chapter 21. Electronic structure theory of DNA: from semi-empirical theory
Chapter 22. Electronic transport and localization in short and long DNA
Chapter 23. Polaronic charge transport mechanism in DNA
Chapter 24. Atomistic models of biological charge transfer
Chapter 25. Nonlinear Models in DNA conductivity
SECTION 5. Electric Properties
Chapter 26. Embedding method for conductance studies of large molecules
Chapter 27. Ballistic conductance for all-atom models of native and chemically modified DNA: a review of Kubo-formula-based approach
- No. of pages: 604
- Language: English
- Edition: 1
- Published: July 4, 2006
- Imprint: Elsevier Science
- Hardback ISBN: 9780444522207
- eBook ISBN: 9780080461014
ES
Evgeni Starikov
JL
James P. Lewis
ST