Modeling and Precision Control of Systems with Hysteresis
- 1st Edition - October 30, 2015
- Authors: Lei Liu, Yi Yang
- Language: English
- Paperback ISBN:9 7 8 - 0 - 1 2 - 8 0 3 5 2 8 - 3
- eBook ISBN:9 7 8 - 0 - 1 2 - 8 0 3 5 6 7 - 2
Modelling and Precision Control of Systems with Hysteresis covers the piezoelectric and other smart materials that are increasingly employed as actuators in precision engineeri… Read more
Purchase options
Institutional subscription on ScienceDirect
Request a sales quoteModelling and Precision Control of Systems with Hysteresis covers the piezoelectric and other smart materials that are increasingly employed as actuators in precision engineering, from scanning probe microscopes (SPMs) in life science and nano-manufacturing, to precision active optics in astronomy, including space laser communication, space imaging cameras, and the micro-electro-mechanical systems (MEMS). As smart materials are known for having hysteretic dynamics, it is necessary to overcome issues with a broadband range of frequencies.
This book offers both the mathematical tools for modeling the systems and applications, including complete case studies and source code for the experiments to help both academics and researchers in the industry to achieve precision in the control of Smart Actuator systems.
- Provides a comprehensive identification of typical complex hysteresis
- Presents control algorithm design for systems with hysteresis
- Contain numerous real life examples and two complete case studies
- Source code to examples are provided
Control Engineers, Mechanical Engineers and Aerospace Engineers both in Academia and Industry. Researchers interested in incorporating Smart Actuators in theirs projects.
- Preface
- Acknowledgments
- 1: Introduction
- 1.1 Motivation
- 1.2 Literature Review
- 1.3 Book Objectives
- 1.4 Book Overview
- 2: Fundamentals of Systems with Hysteresis
- Abstract
- 2.1 Introduction
- 2.2 Smart Systems with Hysteresis
- 2.3 Mechanical and Capacitor Dynamics
- 2.4 Static Hysteresis
- 2.5 Behavior Comparison of Preisach Hysteresis and Phase Delay under Sinusoidal Inputs
- 2.6 Closed-Loop Response of Smart Systems with Hysteresis
- 2.7 Dynamic Hysteresis
- 2.8 Composite Representation of Dynamic Hysteresis
- 2.9 Modeling Suggestions for Systems with Hysteresis
- 2.10 Conclusions
- 3: Hysteresis Modeling in Smart Actuators
- Abstract
- 3.1 Introduction
- 3.2 Simplified Composite Representation of Smart Actuators
- 3.3 Creep Effect
- 3.4 Mechanical Vibration and the RC Effect in Piezoelectric Actuators
- 3.5 Dynamics and Effects of Smart Actuators at Different Frequencies
- 4: Comprehensive Modeling of Multifield Hysteretic Dynamics
- Abstract
- 4.1 Introduction
- 4.2 Description of a Piezoelectric Smart System
- 4.3 Multifield Modeling of the Hysteretic Dynamics
- 4.4 Identification Strategy Design
- 4.5 Experimental Studies of the Proposed Modeling and Identification
- 4.6 Complete Modeling of Hysteretic Dynamics in Piezoelectric Smart Systems with High Stiffness
- 4.7 Conclusion
- 5: Control Approaches for Systems with Hysteresis
- Abstract
- 5.1 Introduction
- 5.2 PID Control Tuning
- 5.3 Inversion-Based Feedforward Control
- 5.4 Composite Control
- 5.5 Multirate Composite Robust Control
- 5.6 Control Approach Suggestions for Smart Systems with Hysteresis
- 5.7 Conclusion
- 6: Case Study of a Piezoelectric Steering Platform
- Abstract
- 6.1 Introduction
- 6.2 System Description
- 6.3 Control System Design
- 6.4 Experimental Results and Discussion
- 6.5 Conclusions
- 7: Case Study of Active Vibration Isolation
- Abstract
- 7.1 Introduction
- 7.2 Multiobjective Robust Active Vibration Control for Flexure Jointed Struts
- 7.3 Coupling Analysis and Dynamics Model
- 7.4 Robust Synthesis Controller Design
- 7.5 Performance of Active Vibration Isolation
- 7.6 Conclusions
- 8: Conclusions
- Appendix A
- A.1: Persistent-excitation Condition Under Designed Input Signals and Sampling Rules
- A.2: Inversion of the Preisach Hysteresis Model
- Index
- No. of pages: 178
- Language: English
- Edition: 1
- Published: October 30, 2015
- Imprint: Butterworth-Heinemann
- Paperback ISBN: 9780128035283
- eBook ISBN: 9780128035672
LL
Lei Liu
His research interests mainly focus on the precision modelling and control of hysteretic dynamics, vibration isolation, modern control systems design and with the applications in precision engineering, aeronautics and astronautics.
Dr Liu has developed the modelling and identification of accurate hysteretic dynamics as well as several compensation and control approaches for piezoelectric systems. The proposed modelling, identification and compensation methods have been demonstrated in experiments. Dr Liu has published more than 15 journal papers and conference papers in
this field.
YY