
Metallic Foam Bone
Processing, Modification and Characterization and Properties
- 1st Edition - November 14, 2016
- Imprint: Woodhead Publishing
- Editor: Cuie Wen
- Language: English
- Hardback ISBN:9 7 8 - 0 - 0 8 - 1 0 1 2 8 9 - 5
- eBook ISBN:9 7 8 - 0 - 0 8 - 1 0 1 2 9 0 - 1
Metallic Foam Bone: Processing, Modification and Characterization and Properties examines the use of porous metals as novel bone replacement materials. With a strong focus on… Read more

Purchase options

Institutional subscription on ScienceDirect
Request a sales quoteMetallic Foam Bone: Processing, Modification and Characterization and Properties examines the use of porous metals as novel bone replacement materials. With a strong focus on materials science and clinical applications, the book also examines the modification of metals to ensure their biocompatibility and efficacy in vivo.
Initial chapters discuss processing and production methods of metals for tissue engineering and biomedical applications that are followed by topics on practical applications in orthopedics and dentistry. Finally, the book addresses the surface science of metallic foam and how it can be tailored for medical applications.
This book is a valuable resource for materials scientists, biomedical engineers, and clinicians with an interest in innovative biomaterials for orthopedic and bone restoration.
- Introduces biomaterials researchers to a promising, rapidly developing technology for replacing hard tissue
- Increases familiarity with a range of technologies, enabling materials scientists and engineers to improve the material properties of porous metals
- Explores the clinical applications of metal foams in orthopedics and dentistry
Biomaterials scientists, biomedical engineers, orthopaedic and dental clinicians
- Related titles
- List of contributors
- Preface
- 1. Metallic scaffolds manufactured by selective laser melting for biomedical applications
- 1.1. Introduction
- 1.2. Advanced manufacturing techniques for tissue engineering scaffolds and implants
- 1.3. Future research directions
- 1.4. Conclusions
- 2. Production methods and characterization of porous Mg and Mg alloys for biomedical applications
- 2.1. Introduction
- 2.2. Production methods for porous Mg and some of its alloys
- 2.3. Discussion
- 2.4. Challenges and directions of future research
- 3. Metal scaffolds processed by electron beam melting for biomedical applications
- 3.1. Introduction
- 3.2. Electron beam melting used in biomedical manufacturing
- 3.3. Achievements in the design and fabrication of biocompatible scaffolds
- 3.4. Metallurgy and mechanical properties of electron beam melting-manufactured parts
- 3.5. Overview of challenges and future research directions
- 4. Titanium foam for bone tissue engineering
- 4.1. Introduction
- 4.2. Materials
- 4.3. Mechanical properties of titanium foams
- 4.4. Biological properties of titanium foam
- 4.5. Applications of titanium foam in orthopedics
- 4.6. Future trends
- 5. Titanium foam scaffolds for dental applications
- 5.1. Introduction
- 5.2. Dental implants and materials
- 5.3. Properties and characteristics of titanium foam scaffolds
- 5.4. Osseointegration in titanium foam scaffolds
- 5.5. Dental implants with porous titanium coating
- 5.6. Dental applications of titanium scaffolds: advancement and challenges
- 5.7. Conclusion and future trends
- 6. Chemical surface modification of a titanium scaffold
- 6.1. Introduction
- 6.2. Methods of chemical and heat treatments
- 6.3. Properties of titanium scaffolds subjected to chemical and heat treatments
- 6.4. Clinical application of titanium scaffolds subjected to chemical and heat treatments
- 6.5. Future trends
- 7. Nanotopography and surface chemistry of TiO2–ZrO2–ZrTiO4 nanotubular surfaces and the influence on their bioactivity and cell responses
- 7.1. Introduction
- 7.2. Experiment
- 7.3. Results and discussion
- 7.4. Conclusions
- 8. Antibacterial design for metal implants
- 8.1. Introduction
- 8.2. Implant-associated bacterial infections
- 8.3. Research and development of antibacterial metals for medical applications
- 8.4. Future prospects
- 9. The bioactivity and bone cell attachment of nanotubular layers anodized in aqueous and nonaqueous electrolytes
- 9.1. Introduction
- 9.2. Experimental
- 9.3. Results and discussion
- 9.4. Conclusions
- Index
- Edition: 1
- Published: November 14, 2016
- No. of pages (Hardback): 260
- No. of pages (eBook): 260
- Imprint: Woodhead Publishing
- Language: English
- Hardback ISBN: 9780081012895
- eBook ISBN: 9780081012901
CW