Skip to main content

Save up to 20% on Elsevier print and eBooks with free shipping. No promo code needed.

Save up to 20% on print and eBooks.

Induced Modules over Group Algebras

1st Edition, Volume 161 - March 1, 1990

Author: G. Karpilovsky

Language: English
eBook ISBN:
9 7 8 - 0 - 0 8 - 0 8 7 2 7 2 - 8

In 1898 Frobenius discovered a construction which, in present terminology, associates with every module of a subgroup the induced module of a group. This construction proved to be… Read more

Induced Modules over Group Algebras

Purchase options

LIMITED OFFER

Save 50% on book bundles

Immediately download your ebook while waiting for your print delivery. No promo code is needed.

Institutional subscription on ScienceDirect

Request a sales quote
In 1898 Frobenius discovered a construction which, in present terminology, associates with every module of a subgroup the induced module of a group. This construction proved to be of fundamental importance and is one of the basic tools in the entire theory of group representations.This monograph is designed for research mathematicians and advanced graduate students and gives a picture of the general theory of induced modules as it exists at present. Much of the material has until now been available only in research articles. The approach is not intended to be encyclopedic, rather each topic is considered in sufficient depth that the reader may obtain a clear idea of the major results in the area.After establishing algebraic preliminaries, the general facts about induced modules are provided, as well as some of their formal properties, annihilators and applications. The remaining chapters include detailed information on the process of induction from normal subgroups, projective summands of induced modules, some basic results of the Green theory with refinements and extensions, simple induction and restriction pairs and permutation modules. The final chapter is based exclusively on the work of Weiss, presenting a number of applications to the isomorphism problem for group rings.