LIMITED OFFER
Save 50% on book bundles
Immediately download your ebook while waiting for your print delivery. No promo code needed.
Graphene Quantum Dots and their Derived Nanocomposites: Fundamentals and Applications presents the latest advances, with emphasis placed on the structure, design, proper… Read more
LIMITED OFFER
Immediately download your ebook while waiting for your print delivery. No promo code needed.
1. Quantum dots: An introduction to basics and classification
2. Graphene quantum dots: Structure, synthesis, and features/applications
3. Polymer and graphene quantum dots derived nanocomposites: Fundamentals, characteristics, processing and applications
4. Graphene quantum dots and inorganic nanoparticles filled nanocomposites/hybrids
5. Progresses in thermoplastic/thermosets polymeric nanocomposites reinforced with graphene quantum dots
6. Advancements in conducting polymer/graphene quantum dots and rubber/graphene quantum dots nanocomposites
7. Energy storage and conversion devices using graphene quantum dots filled nanocomposites: Supercapacitors, Li-ion batteries and solar cells
8:.Graphene quantum dots derivative nanocomposites for environmental and sustainability applications
9. Performance of graphene quantum dots reinforced nanocomposites for anticorrosion coatings and electromagnetic interference radiation shielding fields (Ayesha Kausar and Esmaeal Ghavanloo)
10. Multifunctional graphene quantum dots nanocomposites in biomedical sector
11. Industrial and future scenarios of graphene quantum dots derived nanocomposites
AK
Ayesha Kausar currently works for the National Centre for Physics in Islamabad, Pakistan. She was previously affiliated with Quaid-i-Azam University and the National University of Sciences and Technology, both in Islamabad, Pakistan. She obtained her PhD from Quaid-i-Azam University and the Korea Advanced Institute of Science and Technology, Daejeon, South Korea. Dr. Kausar’s current research interests include the design, fabrication, characterization, and exploration of structure-property relationships and potential prospects of nanocomposites, polymeric nanocomposites, polymeric composites, polymeric nanoparticles, polymer dots, nanocarbon materials (graphene and derivatives, carbon nanotube, nano-diamond, carbon nano-onion, carbon nano-coil, carbon nanobelt, carbon nano-disk, carbon dot, and other nanocarbons), hybrid materials, eco-friendly materials, nanocomposite nanofibers, and nanofoam architectures. Consideration of morphological, mechanical, thermal, electrical, anticorrosion, barrier, flame retardant, radiation shielding, biomedical, and other essential materials properties for aerospace, automotive, fuel cell membranes, Li-ion battery electrodes, electronics, sensors, solar cells, water treatment, gas separation, textiles, energy production and storage devices, biomaterials, and other technical relevance are among her notable research concerns.